New insights into the metallogeny of MVT Zn-Pb deposits: A case study from the Nayongzhi in South China, using field data, fluid compositions, and in situ S-Pb isotopes

2018 ◽  
Vol 103 (1) ◽  
pp. 91-108 ◽  
Author(s):  
Jia-Xi Zhou ◽  
Xuan-Ce Wang ◽  
Simon A. Wilde ◽  
Kai Luo ◽  
Zhi-Long Huang ◽  
...  
Keyword(s):  
2020 ◽  
Vol 105 (1) ◽  
pp. 35-51 ◽  
Author(s):  
Kai Luo ◽  
Jia-Xi Zhou ◽  
Zhi-Long Huang ◽  
John Caulfield ◽  
Jian-Xin Zhao ◽  
...  

Abstract Unraveling the evolution of Mississippi Valley-type (MVT) hydrothermal system is crucial for understanding ore genesis and exploration. In this paper, we take the Wusihe Pb-Zn deposit in the western Yangtze Block (South China) as a case study, using detailed ore deposit geology, quartz in situ trace elements, and sulfides in situ S-Pb isotopes, to propose a new integrated model for the evolution of MVT hydrothermal system. Four hydrothermal stages were identified in the Wusihe ore district: (I) lamellar pyrite-sphalerite; (II) disseminated, stock-work, and brecciated sphalerite-galena; (III) massive galena, and (IV) veined calcite-bitumen. Within the most representative stage (stage II), Al concentrations in quartz (Q) increase from 8.46–354 ppm (mean 134 ppm) of Q1 to 171–3049 ppm (mean 1062 ppm) of Q2, and then decrease to 3.18–149 ppm (mean 25.4 ppm) of Q3. This trend indicates the role of acid-producing processes that resulted from sulfide precipitation and acid consumption by carbonate buffering. The occurrence of authigenic non-altered K-feldspar provides further evidence that the ore-forming fluids were weakly acidic with pH values of > ~5.5. Moreover, new bulk δ34S values of sulfides (+1.8 to +14.3‰) are overall lower than those previously reported (+7.1 to +20.9‰), implying that in addition to thermochemical sulfate reduction (TSR), bacterial sulfate reduction (BSR) may play an important role in the formation of S2–. In situ δ34S values show a larger range (–4.3 to +26.6‰), and significantly, varies within single grains (up to +12.3‰), suggesting mixing of two isotopically distinct S2– end-members produced by TSR and BSR. The diagenetic and hydrothermal early phase (stage I) sulfides were formed within a nearly closed system of BSR, whereas the formation of late phase (stage II and stage III) sulfides was caused by the input of hydrothermal fluids that promoted TSR. New galena in situ Pb isotopic ratios (206Pb/204Pb = 18.02–18.19, 207Pb/204Pb = 15.66–15.69, and 208Pb/204Pb = 38.14–38.39) suggest that the sources of mineralizing metals in the Wusihe deposit are mainly Proterozoic basement rocks. Hence, a multi-process model (i.e., basin-mountain coupling, fluid mixing, local sulfate reduction, in situ acid-producing and involvement of black shales and carbonate sequences) was responsible for the formation of the Wusihe deposit, while S2– was produced by both TSR and BSR, providing new insights into the evolution of MVT hydrothermal system.


2016 ◽  
Vol 63 (1) ◽  
pp. 19-34 ◽  
Author(s):  
Yuan-Jyh Lan ◽  
Tai-Wen Hsu ◽  
Rafał Ostrowski ◽  
Marek Szmytkiewicz

Abstract The paper presents results of field and theoretical investigations of wave transformation in the surf zone near the IBW PAN Coastal Research Station in Lubiatowo (Poland, the south Baltic Sea). The study site displays multi-bar cross-shore profiles that intensively dissipate wave energy, mostly induced by breaking. The main field data comprise wave heights and cross-shore bathymetric profiles.Wave transformation is modelled theoretically by two approaches, namely the IBW PAN phase-averaged wave transformation model and the approach based on the hydraulic jump model, developed by Hsu & Lai (2009) for hydrological situations encountered under the actual conditions of two field campaigns - in 1987 and 1996. Discrepancies between the measured data and the model results are discussed. In general, the model results are in good agreement with the in-situ observations. The comparison of the field data with the computational results concerns a part of the surf zone between about 5 m water depth and the first nearshore stable bar, where the depth amounts to ca. 1.2 m.


2018 ◽  
pp. 60-67
Author(s):  
Henrika Pihlajaniemi ◽  
Anna Luusua ◽  
Eveliina Juntunen

This paper presents the evaluation of usersХ experiences in three intelligent lighting pilots in Finland. Two of the case studies are related to the use of intelligent lighting in different kinds of traffic areas, having emphasis on aspects of visibility, traffic and movement safety, and sense of security. The last case study presents a more complex view to the experience of intelligent lighting in smart city contexts. The evaluation methods, tailored to each pilot context, include questionnaires, an urban dashboard, in-situ interviews and observations, evaluation probes, and system data analyses. The applicability of the selected and tested methods is discussed reflecting the process and achieved results.


2013 ◽  
Vol 16 (1) ◽  
pp. 59-67

<p>The Soil Science Institute of Thessaloniki produces new digitized Soil Maps that provide a useful electronic database for the spatial representation of the soil variation within a region, based on in situ soil sampling, laboratory analyses, GIS techniques and plant nutrition mathematical models, coupled with the local land cadastre. The novelty of these studies is that local agronomists have immediate access to a wide range of soil information by clicking on a field parcel shown in this digital interface and, therefore, can suggest an appropriate treatment (e.g. liming, manure incorporation, desalination, application of proper type and quantity of fertilizer) depending on the field conditions and cultivated crops. A specific case study is presented in the current work with regards to the construction of the digitized Soil Map of the regional unit of Kastoria. The potential of this map can easily be realized by the fact that the mapping of the physicochemical properties of the soils in this region provided delineation zones for differential fertilization management. An experiment was also conducted using remote sensing techniques for the enhancement of the fertilization advisory software database, which is a component of the digitized map, and the optimization of nitrogen management in agricultural areas.</p>


1998 ◽  
Vol 37 (1) ◽  
pp. 155-162
Author(s):  
Flemming Schlütter ◽  
Kjeld Schaarup-Jensen

Increased knowledge of the processes which govern the transport of solids in sewers is necessary in order to develop more reliable and applicable sediment transport models for sewer systems. Proper validation of these are essential. For that purpose thorough field measurements are imperative. This paper renders initial results obtained in an ongoing case study of a Danish combined sewer system in Frejlev, a small town southwest of Aalborg, Denmark. Field data are presented concerning estimation of the sediment transport during dry weather. Finally, considerations on how to approach numerical modelling is made based on numerical simulations using MOUSE TRAP (DHI 1993).


Sign in / Sign up

Export Citation Format

Share Document