Jahnsite-(NaFeMg), a new mineral from the Tip Top mine, Custer County, South Dakota: Description and crystal structure

2008 ◽  
Vol 93 (5-6) ◽  
pp. 940-945 ◽  
Author(s):  
A. R. Kampf ◽  
I. M. Steele ◽  
T. A. Loomis
Author(s):  
Hexiong Yang ◽  
Tommy Yong ◽  
Robert T. Downs

ABSTRACT A new mineral species, ferrobobfergusonite, ideally □Na2Fe2+5Fe3+Al(PO4)6, has been found in the Victory Mine, Custer County, South Dakota, USA. It is massive and associated with ferrowyllieite, schorl, fillowite, arrojadite, quartz, and muscovite. Broken pieces of ferrobobfergusonite are blocky or tabular with single crystals up to 0.9 × 0.7 × 0.4 mm. No twinning or parting is observed macroscopically. The mineral is deep green-brown and transparent with a pale green-yellow streak and vitreous luster. It is brittle and has a Mohs hardness of ∼5, with perfect cleavage on {010}. The measured and calculated densities are 3.68(1) and 3.69 g/cm3, respectively. Optically, ferrobobfergusonite is biaxial (+), with α = 1.698 (2), β = 1.705 (2), γ = 1.727 (2) (white light), 2V (meas.) = 65(2)°, 2V (calc.) = 60°, with orientation of the optic axes α ∧ X = 16°, β = Y, with X = yellowish brown, Y = brown, and Z = deep brown. The dispersion is very strong with r > v. The calculated compatibility index based on the empirical formula is 0.017 (superior). An electron microprobe analysis yielded an empirical formula (based on 24 O apfu) of (Na1.72□1.28)Σ3.00(Fe2+3.50Mn0.89Mg0.44Ca0.13)Σ4.96(Fe3+0.77Al0.23)Σ1.00Al(PO4)6. Ferrobobfergusonite is isostructural with bobfergusonite, a member of the alluaudite supergroup. It is monoclinic, with space group P21/n and unit-cell parameters a = 12.7156(3), b = 12.3808(3), c = 10.9347(3) Å, β = 97.3320(10)°, and V = 1707.37(7) Å3. The crystal structure of ferrobobfergusonite contains six octahedral M (= Fe2+, Mg, Mn2+, Al, Fe3+) sites and five X (= Na, Mn2+, Ca) sites with coordination numbers between 6 and 8. The six MO6 octahedra share edges to form two types of kinked chains extending along [101], with one consisting of M1–M4–M5 linkages and the other of M2–M3–M6 linkages. These chains are joined by PO4 tetrahedra to form sheets parallel to (010), which are linked together through corner-sharing between PO4 tetrahedra and MO6 octahedra in the adjacent sheets, leaving open channels parallel to a, where the large X cations are situated. The M cations are strongly ordered over the six sites, with M1, M2, M3, and M4 being dominantly occupied by Fe2+, and M5 and M6 by Fe3+ and Al, respectively. Among the five X sites, the X1 site is filled with Mn2+ and Ca, whereas the X2–X5 sites are partially occupied by Na.


2013 ◽  
Vol 77 (1) ◽  
pp. 93-105 ◽  
Author(s):  
I. Kusachi ◽  
S. Kobayashi ◽  
Y. Takechi ◽  
Y. Nakamuta ◽  
T. Nagase ◽  
...  

AbstractShimazakiite occurs as greyish white aggregates up to 3 mm in diameter. Two polytypes, shimazakiite-4M and shimazakiite-4O, have been identified, the former in nanometre-sized twin lamellae and the latter in micrometre-sized lamellae. Shimazakiite was discovered in an irregular vein in crystalline limestone near gehlenite-spurrite skarns at Fuka mine, Okayama Prefecture, Japan. Associated minerals include takedaite, sibirskite, olshanskyite, parasibirskite, nifontovite, calcite and an uncharacterized hydrous calcium borate. The mineral is biaxial (–), with the following refractive indices (at 589 nm): α = 1.586(2), β = 1.650(2), γ = 1.667(2) and 2Vcalc = 53º [shimazakiite-4M]; and α = 1.584(2), β = 1.648(2), γ = 1.670(2) and 2Vcalc = 54.88º [shimazakiite-4O]. Quantitative electronmicroprobe analyses (means of 28 and 25 determinations) gave the empirical formulae Ca2B1.92O4.76(OH)0.24 and Ca2B1.92O4.76(OH)0.24 for shimazakiite-4M and shimazakiite-4O, respectively. The crystal structure refinements: P21/c, a = 3.5485(12), b = 6.352(2), c = 19.254(6) Å , β = 92.393(13)°, V = 433.6(3) Å3 [for shimazakiite-4M]; and P212121, a = 3.55645(8), b = 6.35194(15), c = 19.2534(5) Å , V = 434.941(18) Å3[for shimazakiite-4O], converged into R1 indices of 0.1273 and 0.0142, respectively. The crystal structure of shimazakiite consists of a layer containing B2O5 units (two near-coplanar triangular corner-sharing BO3 groups) and 6- and 7-coordinate Ca atoms. Different sequences in the c direction of four layers are observed in the polytypes. The five strongest lines in the powder-diffraction pattern [listed as d in Å (I)(hkl)] are: 3.02(84)(022); 2.92(100)(10) 2.81(56)(104); 2.76(32)(113); 1.880(32)(11,12,126,118) [for shimazakiite-4M]; and 3.84(33)(014); 3.02(42)(022); 2.86(100)(104); 2.79(29)(113); 1.903(44)(126,118) [for shimazakiite-4O].


2014 ◽  
Vol 78 (3) ◽  
pp. 739-745 ◽  
Author(s):  
A. R. Cabral ◽  
R. Skála ◽  
A. Vymazalová ◽  
A. Kallistová ◽  
B. Lehmann ◽  
...  

AbstractKitagohaite, ideally Pt7Cu, is a new mineral from the Lubero region of North Kivu, Democratic Republic of the Congo. The mineral occurs as alluvial grains that were recovered together with other Pt-rich intermetallic compounds and Au. Kitagohaite is opaque, greyish white and malleable and has a metallic lustre and a grey streak. In reflected light, kitagohaite is white and isotropic. The crystal structure of kitagohaite is cubic, space group Fmm, of the Ca7Ge type, with a = 7.7891(3) Å, V = 472.57(5) Å3 and Z = 4. The strongest diffraction lines [d in Å(I)(hkl)] are: 2.246 (100)(222), 1.948(8)(004), 1.377 (77)(044), 1.174(27)(622), 1.123 (31)(444) and 0.893 (13)(662). The Vickers hardness is 217 kg mm−2 (VHN100), which is equivalent to a Mohs hardness of 3½ and the calculated density is 19.958(2) g cm−3. Electron-microprobe analyses gave a mean value (n = 13) of 95.49 wt.% Pt and 4.78 wt.%Cu, which corresponds to Pt6.93Cu1.07 on the basis of eight atoms. The new mineral is named for the Kitagoha river, in the Lubero region.


2006 ◽  
Vol 17 (6) ◽  
pp. 839-846 ◽  
Author(s):  
Fernando Cá mara ◽  
Fabio Bellatreccia ◽  
Giancarlo Della Ventura ◽  
Annibale Mottana

2013 ◽  
Vol 77 (7) ◽  
pp. 3027-3037 ◽  
Author(s):  
C. Biagioni ◽  
P. Orlandi ◽  
F. Nestola ◽  
S. Bianchin

AbstractThe new mineral species oxycalcioroméite, Ca2Sb5+2O6O, has been discovered at the Buca della Vena mine, Stazzema, Apuan Alps, Tuscany, Italy. It occurs as euhedral octahedra, up to 0.1 mm in size, embedded in dolostone lenses in the baryte + pyrite + iron oxides ore. Associated minerals are calcite, cinnabar, derbylite, dolomite, hematite, 'mica', pyrite, sphalerite and 'tourmaline'. Oxycalcioroméite is reddish-brown in colour and transparent. It is isotropic, with ncalc = 1.950.Electron microprobe analysis gave (wt.%; n = 6) Sb2O5 63.73, TiO2 3.53, SnO2 0.28, Sb2O3 10.93, V2O3 0.68, Al2O3 0.28, PbO 0.68, FeO 5.52, MnO 0.13, CaO 13.68, Na2O 0.83, F 1.20, O = F – 0.51, total 100.96. No H2O, above the detection limit, was indicated by either infrared or micro-Raman spectroscopies. The empirical formula, based on 2 cations at the B site, is (Ca1.073Fe2+0.338Sb3+0.330Na0.118Pb0.013Mn0.008)Σ=1.880(Sb5+1.734Ti0.194V0.040Al0.024Sn0.008)Σ=2.000(O6.682F0.278)Σ6.960. The crystal structure study gives a cubic unit cell, space group Fdm, with a 10.3042(7) Å, V 1094.06(13) Å3, Z = 8. The five strongest X-ray powder diffraction lines are [d(Å)I(visually estimated)(hkl)]: 3.105(m)(311); 2.977(s)(222); 2.576(m)(400); 1.824(ms)(440); and 1.556(ms)(622). The crystal structure of oxycalcioroméite has been solved by X-ray single-crystal study on the basis of 114 observed reflections, with a final R1 = 0.0114. It agrees with the general features of the members of the pyrochlore supergroup.


Sign in / Sign up

Export Citation Format

Share Document