How Much Site Quality Influence Housing Value?

Author(s):  
Luca D'Acci
Keyword(s):  
2011 ◽  
Author(s):  
Nicole Forry ◽  
Kathryn Tout ◽  
Martha Zaslow ◽  
Ivelisse Martinez-Beck

2019 ◽  
Vol 39 (4) ◽  
pp. 429 ◽  
Author(s):  
Joshua J. Puhlick ◽  
Shawn Fraver ◽  
Ivan J. Fernandez ◽  
Aaron Teets ◽  
Aaron R. Weiskittel ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 485b-485
Author(s):  
Lisa M. Barry ◽  
Michael N. Dana

Nurse crops are often recommended in prairie restoration planting. This work investigated several alternative nurse crops to determine their utility in prairie planting. Nurse crops were composed of increasing densities (900, 1800, or 2700 seeds/m2) of partridge pea, spring oats, spring barley, Canada wild rye, or equal mixtures of partridge pea and one of the grasses. The experimental design was a randomized complete-block set in two sites with three blocks per site and 48 treatments per block. Each 3 × 3-m plot contained 1 m2 planted in Dec. 1995 or Mar. 1996 with an equal mix of seven prairie species. The nurse crops were sown over each nine square meter area in April 1996. Plots lacking nurse crops served as controls. Evaluated data consisted of weed pressure rankings and weed and prairie plant dry weight. Nurse crop treatments had a significant effect on weed pressure in both sites. Barley (1800 and 2700 seeds/m2) as well as partridge pea + barley (2700 seeds/m2) were most effective at reducing weed pressure. When weed and prairie plant biomass values were compared, a significant difference was observed for site quality and planting season. Prairie plant establishment was significantly greater in the poorly drained, less-fertile site and spring-sown plots in both sites had significantly higher prairie biomass values. Overall, after two seasons, there was no advantage in using nurse crops over the control. Among nurse crop treatments, oats were most effective in reducing weed competition and enhancing prairie plant growth.


1994 ◽  
Vol 59 ◽  
Author(s):  
D. Maddelein ◽  
B. Muys ◽  
J. Neirynck ◽  
G. Sioen

The  forest of Halle (560 ha), situated 20 km south of Brussels is covered by a  beech (Fagus sylvatica)  forest, locally mixed with secundary species (Tilia,  Fraxinus, Acer, Quercus,... ). In almost all  stands, herbal vegetation is dominated by bluebell (Hyacinthoides  non-scripta).     The research intended to classify 36 plots of different tree species  composition according to their site quality. Three classification methods  were compared: the first one based on the indicator value of the understorey  vegetation, a second one on the humus morphology and a last one on some  quantitative soil characteristics. According to the plant sociological site  classification, the plots have the same site quality. However, humus forms  differ apparently and significant differences were found in pH value and base  cation saturation of the soil, abundance and biomass of earthworms and  biomass of the ectorganic horizon. Tree species proved to be the main cause  of these differences.     The results illustrate that the herbal vegetation is not always a reliable  indicator of site quality. In the case of a homogeneous vegetation dominated  by one or more indifferent species, classification on humus morphology or  soil analysis are more appropriate. In the forest of Halle, the tree species  is probably the main cause of the observed differences in site quality.


1992 ◽  
Vol 7 (3) ◽  
pp. 265-282 ◽  
Author(s):  
Mark Thayer ◽  
Heidi Albers ◽  
Morteza Rahmatian
Keyword(s):  

Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Yuzhi Tang ◽  
Quanqin Shao ◽  
Tiezhu Shi ◽  
Guofeng Wu

Forest stand volume is one of the key forest structural attributes in estimating and forecasting ecosystem productivity and carbon stock. However, studies on growth modeling and environmental influences on stand volume are still rare to date, especially in subtropical forests in karst areas, which are characterized by a complex species composition and are important in the global carbon budget. In this paper, we developed growth models of stand volume for all the dominant tree species (groups) (DTSG) in a subtropical karst area, the Guizhou Plateau based on an investigation of the effects of various environmental factors on stand volume. The Richards growth function, space-for-time substitution and zonal-hierarchical modeling method were applied in the model fitting, and multiple indices were used in the model evaluation. The results showed that the climatic factors of annual temperature and precipitation, as well as the site factors of stand origin, elevation, slope gradient, topsoil thickness, site quality degree, rocky desertification type and rocky desertification degree, have significant influences on stand volume, and the topsoil thickness and site quality degree have the strongest positive effect. A total of 959 growth equations of stand volume were fitted with a five-level stand classifier (DTSG–climatic zone–site quality degree–stand origin–rocky desertification type). All the growth equations were qualified, because all passed the TRE test (≤30%), and the majority of the R2 ≥ 0.50, above 70% of the RMSE were between 5.0 and 20.0, and above 80% of the P ≥ 75%. These findings provide updated knowledge about the environmental effect on the stand volume growth of subtropical forests in karst areas, and the developed stand volume growth models are convenient for forest management and planning, further contributing to the study of forest carbon storage assessments and global carbon cycling.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 556
Author(s):  
Mauricio Zapata-Cuartas ◽  
Bronson P. Bullock ◽  
Cristian R. Montes ◽  
Michael B. Kane

Intensive loblolly pine (Pinus taeda L.) plantation management in the southeastern United States includes mid-rotation silvicultural practices (MRSP) like thinning, fertilization, competitive vegetation control, and their combinations. Consistent and well-designed long-term studies considering interactions of MRSP are required to produce accurate projections and evaluate management decisions. Here we use longitudinal data from the regional Mid-Rotation Treatment study established by the Plantation Management Research Cooperative (PMRC) at the University of Georgia across the southeast U.S. to fit and validate a new dynamic model system rooted in theoretical and biological principles. A Weibull pdf was used as a modifier function coupled with the basal area growth model. The growth model system and error projection functions were estimated simultaneously. The new formulation results in a compatible and consistent growth and yield system and provides temporal responses to treatment. The results indicated that the model projections reproduce the observed behavior of stand characteristics. The model has high predictive accuracy (the cross-validation variance explained was 96.2%, 99.7%, and 98.6%; and the prediction root mean square distance was 0.704 m, 19.1 trees ha−1, and 1.03 m2ha−1 for dominant height (DH), trees per hectare (N), and basal area (BA), respectively), and can be used to project the current stand attributes following combinations of MRSP and with different thinning intensities. Simulations across southern physiographic regions allow us to conclude that the most overall ranking of MRSP after thinning is fertilization + competitive vegetation control (Fert + CVC) > fertilization only (Fert) > competitive vegetation control only (CVC), and Fert + CVC show less than additive effect. Because of the model structure, the response to treatment changes with location, age of application, and dominant height growth as indicators of site quality. Therefore, the proposed model adequately represents regional growth conditions.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 619-619
Author(s):  
Adriana Perez ◽  
Augestine Boateng ◽  
Sonia Talwar ◽  
Nancy Hodgson

Abstract Current scientific paradigms inadequately capture complex clinical, behavioral, and sociocultural factors impacting health and well-being in persons living with dementia (PLWD). The purpose of this study was to identify differences in individual and neighborhood-level factors contributing to sleep among multi-ethnic PLWD. Wrist actigraphy measured objective sleep characteristics. Subjective sleep was assessed using the PROMIS sleep measure. GIS mapping analyzed neighborhood-level factors (walkability, green space, crime index, density). Walkability was significantly associated with subjective sleep (p.006) controlling for age and dementia stage. Number of night awakenings was significantly associated with density, crime and housing value (p<.001). PLWD in neighborhoods with higher population density, annual crime, low median home and low walkability would benefit from interventions targeting unsupportive neighborhood environments to improve sleep.


Sign in / Sign up

Export Citation Format

Share Document