Site classification in a mixed hardwood forest (Hallerbos, Belgium) with a homogeneous ground vegetation dominated by Hyacinthoides non-scripta (L.) Chouard ex. Rothm.

1994 ◽  
Vol 59 ◽  
Author(s):  
D. Maddelein ◽  
B. Muys ◽  
J. Neirynck ◽  
G. Sioen

The  forest of Halle (560 ha), situated 20 km south of Brussels is covered by a  beech (Fagus sylvatica)  forest, locally mixed with secundary species (Tilia,  Fraxinus, Acer, Quercus,... ). In almost all  stands, herbal vegetation is dominated by bluebell (Hyacinthoides  non-scripta).     The research intended to classify 36 plots of different tree species  composition according to their site quality. Three classification methods  were compared: the first one based on the indicator value of the understorey  vegetation, a second one on the humus morphology and a last one on some  quantitative soil characteristics. According to the plant sociological site  classification, the plots have the same site quality. However, humus forms  differ apparently and significant differences were found in pH value and base  cation saturation of the soil, abundance and biomass of earthworms and  biomass of the ectorganic horizon. Tree species proved to be the main cause  of these differences.     The results illustrate that the herbal vegetation is not always a reliable  indicator of site quality. In the case of a homogeneous vegetation dominated  by one or more indifferent species, classification on humus morphology or  soil analysis are more appropriate. In the forest of Halle, the tree species  is probably the main cause of the observed differences in site quality.

2018 ◽  
Vol 10 (7) ◽  
pp. 1111 ◽  
Author(s):  
Edwin Raczko ◽  
Bogdan Zagajewski

Knowledge of tree species composition is obligatory in forest management. Accurate tree species maps allow for detailed analysis of a forest ecosystem and its interactions with the environment. The research presented here focused on developing methods of tree species identification using aerial hyperspectral data. The research area is located in Southwestern Poland and covers the Karkonoski National Park (KNP), which was significantly damaged by acid rain and pest infestation in the 1980s. High-resolution (3.35 m) Airborne Prism Experiment (APEX) hyperspectral images (288 spectral bands in the range of 413 to 2440 nm) were used as a basis for tree species classification. Beech (Fagus sylvatica), birch (Betula pendula), alder (Alnus incana), larch (Larix decidua), pine (Pinus sylvestris), and spruce (Picea abies) were classified. The classification algorithm used was feed-forward multilayered perceptron (MLP) with a single hidden layer. To simulate such a network, we used the R programming environment and the nnet package. To provide more accurate measurement of accuracy, iterative accuracy assessment was performed. The final tree species maps cover the whole area of KNP; a median overall accuracy (OA) of 87% was achieved, with median producer accuracy (PA) for all classes exceeding 68%. The best-classified classes were spruce, beech, and birch, with median producer accuracy of 93%, 88% and 83%, respectively. The pine class achieved the lowest median producer and user accuracies (68% and 75%, respectively). The results show great potential for the use of hyperspectral data as a tool for identifying tree species locations in diverse mountainous forest.


2021 ◽  
Vol 13 (22) ◽  
pp. 4657
Author(s):  
Rafael Hologa ◽  
Konstantin Scheffczyk ◽  
Christoph Dreiser ◽  
Stefanie Gärtner

For monitoring protected forest landscapes over time it is essential to follow changes in tree species composition and forest dynamics. Data driven remote sensing methods provide valuable options if terrestrial approaches for forest inventories and monitoring activities cannot be applied efficiently due to restrictions or the size of the study area. We demonstrate how species can be detected at a single tree level utilizing a Random Forest (RF) model using the Black Forest National Park as an example of a Central European forest landscape with complex relief. The classes were European silver fir (Abies alba, AA), Norway spruce (Picea abies, PA), Scots pine (Pinus sylvestris, PS), European larch (Larix decidua including Larix kampferii, LD), Douglas fir (Pseudotsuga menziesii, PM), deciduous broadleaved species (DB) and standing dead trees (snags, WD). Based on a multi-temporal (leaf-on and leaf-off phenophase) and multi-spectral mosaic (R-G-B-NIR) with 10 cm spatial resolution, digital elevation models (DTM, DSM, CHM) with 40 cm spatial resolution and a LiDAR dataset with 25 pulses per m2, 126 variables were derived and used to train the RF algorithm with 1130 individual trees. The main objective was to determine a subset of meaningful variables for the RF model classification on four heterogeneous test sites. Using feature selection techniques, mainly passive optical variables from the leaf-off phenophase were considered due to their ability to differentiate between conifers and the two broader classes. An examination of the two phenological phases (using the difference of the respective NDVIs) is important to clearly distinguish deciduous trees from other classes including snags (WD). We also found that the variables of the first derivation of NIR and the tree metrics play a crucial role in discriminating PA und PS. With this unique set of variables some classes can be differentiated more reliably, especially LD and DB but also AA, PA and WD, whereas difficulties exist in identifying PM and PS. Overall, the non-parametric object-based approach has proved to be highly suitable for accurately detecting (OA: 89.5%) of the analyzed classes. Finally, the successful classification of complex 265 km2 study area substantiates our findings.


2021 ◽  
Author(s):  
Sarah Kentsch ◽  
Maximo Larry Lopez Caceres ◽  
Yago Diez

<p>Mixed forests are still little understood ecosystems. Their structure and composition are not well known and not clearly classified. In times of climate change, monitoring of forests is becoming increasingly important. Forest stands were usually researched by field work, which requires high costs and man-power. Field surveys are further only conducted in small patches of the forests, which does often not represent the whole forest. For mixed forests, usually only a dominate species is mentioned but the forests are not classified further. The greater need of better methods with high accuracies to detect and classify tree species in the forest encouraged this study.</p><p>UAVs have been proven to be an efficient tool to conduct automatic field surveys in forestry applications. These easy-to-use and cheap tools are able to gather images with a high resolution. Image processing with image analysis and deep learning techniques is an emerging part in forestry investigations. Therefore, we combined manual field surveys, image analysis and automatic classifications in our study.</p><p>The forests, we were investigating, are riparian forests in Shonai area, Japan, which are classified as mixed forests. 7 sites were chosen and field surveys were conducted. Most of the sites are located in flat areas, but 3 sites are located on slopes, where the access is difficult and field work barely possible. We imaged all sites in different seasons with UAVs and performed image analysis with computer vision and ArcGIS methods. Trees were detected and classified manually and automatically. A comparison of all applied methods was drawn, evaluated and will be provided.</p><p>Our first results are promising to characterize forests in a new dimension. We will provide detailed information about tree species composition, tree locations and forest structures. Mixed forests can be deeper analysed by maps of dominate and subdominant tree species. Area calculations for tree canopies will be highlighted for the main tree species. We will provide winter images for tree counting in heavy snowfall regions and classification accuracies of deep learning techniques.  </p>


2001 ◽  
Vol 152 (5) ◽  
pp. 169-176 ◽  
Author(s):  
Monika Frehner

The article shows that knowledge of the site of a particular forest stand, together with research results and experience, can provide information that is important for the cultivation of mountain forests, including knowledge of the composition of the tree species and the structure and growth capacity of natural forest. Furthermore, certain sites can, thus, be characterized by factors that influence restocking, such as snow mould,lush ground vegetation or low temperature. The guidelines«minimale Pflegemassnahmen» – «Minimal tending of protection forests» (WASSER und FREHNER, 1996) are based on this principle. For individual sites, warnings about natural dangers such as rock fall or statements concerning nature conservation can be made (e.g., the occurrence of tree species, suitability as a biotope for Capercaille). In conclusion, two research projects on the relationship between site and natural dangers will be presented.


2008 ◽  
Vol 159 (4) ◽  
pp. 80-90 ◽  
Author(s):  
Bogdan Brzeziecki ◽  
Feliks Eugeniusz Bernadzki

The results of a long-term study on the natural forest dynamics of two forest communities on one sample plot within the Białowieża National Park in Poland are presented. The two investigated forest communities consist of the Pino-Quercetum and the Tilio-Carpinetum type with the major tree species Pinus sylvestris, Picea abies, Betula sp., Quercus robur, Tilia cordata and Carpinus betulus. The results reveal strong temporal dynamics of both forest communities since 1936 in terms of tree species composition and of general stand structure. The four major tree species Scots pine, birch, English oak and Norway spruce, which were dominant until 1936, have gradually been replaced by lime and hornbeam. At the same time, the analysis of structural parameters indicates a strong trend towards a homogenization of the vertical stand structure. Possible causes for these dynamics may be changes in sylviculture, climate change and atmospheric deposition. Based on the altered tree species composition it can be concluded that a simple ≪copying≫ (mimicking) of the processes taking place in natural forests may not guarantee the conservation of the multifunctional character of the respective forests.


Author(s):  
Maame Esi Hammond ◽  
Radek Pokorný ◽  
Daniel Okae-Anti ◽  
Augustine Gyedu ◽  
Irene Otwuwa Obeng

AbstractThe positive ecological interaction between gap formation and natural regeneration has been examined but little research has been carried out on the effects of gaps on natural regeneration in forests under different intensities of disturbance. This study evaluates the composition, diversity, regeneration density and abundance of natural regeneration of tree species in gaps in undisturbed, intermittently disturbed, and disturbed forest sites. Bia Tano Forest Reserve in Ghana was the study area and three gaps each were selected in the three forest site categories. Ten circular subsampling areas of 1 m2 were delineated at 2 m spacing along north, south, east, and west transects within individual gaps. Data on natural regeneration < 350 cm height were gathered. The results show that the intensity of disturbance was disproportional to gap size. Species diversity differed significantly between undisturbed and disturbed sites and, also between intermittently disturbed and disturbed sites for Simpson’s (1-D), Equitability (J), and Berger–Parker (B–P) indices. However, there was no significant difference among forest sites for Shannon diversity (H) and Margalef richness (MI) indices. Tree species composition on the sites differed. Regeneration density on the disturbed site was significantly higher than on the two other sites. Greater abundance and density of shade-dependent species on all sites identified them as opportunistic replacements of gap-dependent pioneers. Pioneer species giving way to shade tolerant species is a natural process, thus make them worst variant in gap regeneration.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 458
Author(s):  
Haiyan Deng ◽  
Linlin Shen ◽  
Jiaqi Yang ◽  
Xiaoyong Mo

Background and Objectives: The stable stand structure of mixed plantations is the basis of giving full play to forest ecological function and benefit. However, the monocultural Eucalyptus plantations with large-scale and successive planting that caused ecological problems such as reduced species diversity and loss of soil nutrients have presented to be unstable and vulnerable, especially in typhoon-prone areas. The objective of this study was to evaluate the nonspatial structure difference and the stand stability of pure and mixed-Eucalyptus forests, to find out the best mixed pattern of Eucalyptus forests with the most stability in typhoon-prone areas. Materials and Methods: In this study, we randomly investigated eight plots of 30 m × 30 m in pure and mixed-Eucalyptus (Eucalyptus urophylla S. T. Blake × E. grandis W. Hill) plantations of different tree species (Neolamarckia cadamba (Roxb.) Bosser, Acacia mangium Willd., and Pinus elliottii var. Elliottii Engelm. × P. caribaea Morelet) on growth status, characterized and compared the distribution of nonspatial structure of the monoculture and mixtures, and evaluated the stand quality and stability from eight indexes of the nonspatial structure, including preservation rate, stand density, height, diameter, stem form, degree of stem inclination, tree-species composition, and age structure. Results: Eucalyptus surviving in the mixed plantation of Eucalyptus and A. mangium (EA) and in the mixed plantation of Eucalyptus and P. elliottii × P. caribaea (EP) were 5.0% and 7.6% greater than those in pure Eucalyptus plantation (EE), respectively, while only the stand preservation rate of EA was greater (+2.9%) than that of the pure Eucalyptus plantation. The proportions of all mixtures in the height class greater than 7 m were fewer than that of EE. The proportions of EA and mixed plantation of Eucalyptus and N. cadamba (EN) in the diameter class greater than 7 m were 10.6% and 7.8%, respectively, more than that of EE. EN had the highest ratio of branching visibly (41.0%), EA had the highest ratio of inclined stems (8.1%), and EP had the most straight and complete stem form (68.7%). The stand stability of the mixed plantation of Eucalyptus and A. mangium presented to be optimal, as its subordinate function value (0.76) and state value (ω = 0.61) of real stand were the largest. Conclusions: A. mangium is a superior tree species to mix with Eucalyptus for a more stable stand structure in the early growth stage to approach an evident and immense stability and resistance, which is of great significance for the forest restoration of Eucalyptus in response to extreme climate and forest management.


2021 ◽  
Vol 13 (10) ◽  
pp. 1868
Author(s):  
Martina Deur ◽  
Mateo Gašparović ◽  
Ivan Balenović

Quality tree species information gathering is the basis for making proper decisions in forest management. By applying new technologies and remote sensing methods, very high resolution (VHR) satellite imagery can give sufficient spatial detail to achieve accurate species-level classification. In this study, the influence of pansharpening of the WorldView-3 (WV-3) satellite imagery on classification results of three main tree species (Quercus robur L., Carpinus betulus L., and Alnus glutinosa (L.) Geartn.) has been evaluated. In order to increase tree species classification accuracy, three different pansharpening algorithms (Bayes, RCS, and LMVM) have been conducted. The LMVM algorithm proved the most effective pansharpening technique. The pixel- and object-based classification were applied to three pansharpened imageries using a random forest (RF) algorithm. The results showed a very high overall accuracy (OA) for LMVM pansharpened imagery: 92% and 96% for tree species classification based on pixel- and object-based approach, respectively. As expected, the object-based exceeded the pixel-based approach (OA increased by 4%). The influence of fusion on classification results was analyzed as well. Overall classification accuracy was improved by the spatial resolution of pansharpened images (OA increased by 7% for pixel-based approach). Also, regardless of pixel- or object-based classification approaches, the influence of the use of pansharpening is highly beneficial to classifying complex, natural, and mixed deciduous forest areas.


1995 ◽  
Vol 12 (3) ◽  
pp. 115-120 ◽  
Author(s):  
David B. Kittredge ◽  
P. Mark S. Ashton

Abstract Browsing preferences by white-tailed deer were evaluated for 6 tree species in northeastern Connecticut. Deer density averaged 23/mile². Deer exhibited no species-specific preferences for seedlings greater than 19 in. For seedlings less than 19 in., hemlock and black birch were preferred. Red maple, sugar maple, and white pine seedlings were avoided. Red oak seedlings were neither preferred nor avoided. A much higher proportion of seedlings greater than 19.7 in. in height was browsed, regardless of species. Browsing preferences for species in the smaller seedling class, combined with a lack of preference for species in the larger class may result in future stands with less diverse tree species composition. Deer densities in excess of 23/mile² may be incompatible with regeneration of diverse forests in southern New England. North. J. Appl. For. 12(3):115-120.


Sign in / Sign up

Export Citation Format

Share Document