Is There Reliable Evidence of Biodegradable Metals Achieving Bone Fracture Repair in Animal Models: A Systematic Review

2020 ◽  
Author(s):  
Jiazhen Zhang ◽  
Zhizhong Shang ◽  
Yanbiao Jiang ◽  
Xinggang Li ◽  
Minglong Ma ◽  
...  
2020 ◽  
Author(s):  
Jiazhen Zhang ◽  
Zhizhong Shang ◽  
Yanbiao Jiang ◽  
Kui Zhang ◽  
Xinggang Li ◽  
...  

Abstract Biodegradable metals hold promises for bone fracture repair. Their clinical translation requires pre-clinical evaluations including animal studies, which demonstrate the safety and performance of such materials prior to clinical trials. This evidence-based study investigates and analyzes the performance of bone fractures repair as well as degradation properties of biodegradable metals in animal models. Data were carefully collected after identification of population, interventions, comparisons, outcomes and study design, as well as inclusion criteria combining biodegradable metals and animal study. Twelve publications on pure Mg, Mg alloys and Zn alloys were finally included and reviewed after extraction from a collected database of 2122 publications. Compared to controls of traditional non-degradable metals or resorbable polymers, biodegradable metals showed mixed or contradictory outcomes of fracture repair and degradation in animal models. Although quantitative meta-analysis cannot be conducted because of the data heterogeneity, this systematic review revealed that the quality of evidence for biodegradable metals to repair bone fractures in animal models is ‘very low’. Recommendations to standardize the animal studies of biodegradable metals were proposed. Evidence-based biomaterials research could help to both identify reliable scientific evidence and ensure future clinical translation of biodegradable metals for bone fracture repair.


2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Lyvia Lopes Miranda ◽  
Vanessa de Paula Guimarães-Lopes ◽  
Luciana Schulthais Altoé ◽  
Mariáurea Matias Sarandy ◽  
Fabiana Cristina Silveira Alves Melo ◽  
...  

Bone lesions are an important public health problem, with high socioeconomic costs. Bone tissue repair is coordinated by an inflammatory dynamic process mediated by osteoprogenitor cells of the periosteum and endosteum, responsible for the formation of a new bone matrix. Studies using antioxidant products from plants for bone lesion treatment have been growing worldwide. We developed a systematic review to compile the results of works with animal models investigating the anti-inflammatory activity of plant extracts in the treatment of bone lesions and analyze the methodological quality of the studies on this subject. Studies were selected in the PubMed/MEDLINE, Scopus, and Web of Science databases according to the PRISMA statement. The research filters were constructed using three parameters: animal model, bone repair, and plant extracts. 31 full-text articles were recovered from 10 countries. Phytochemical prospecting was reported in 15 studies (48.39%). The most common secondary metabolites were flavonoids, cited in 32.26% studies (n=10). Essential criteria to in vivo animal studies were frequently underreported, suggesting publication bias. The animals treated with plant extracts presented positive results in the osteoblastic proliferation, and consequently, this treatment accelerated osteogenic differentiation and bone callus formation, as well as bone fracture repair. Possibly, these results are associated with antioxidant, regenerative, and anti-inflammatory power of the extracts. The absence or incomplete characterization of the animal models, treatment protocols, and phytochemical and toxicity analyses impairs the internal validity of the evidence, making it difficult to determine the effectiveness and safety of plant-derived products in bone repair.


2020 ◽  
Author(s):  
Haider Al-Waeli ◽  
Ana Paula Reboucas ◽  
Alaa Mansour ◽  
Martin Morris ◽  
Faleh Tamimi ◽  
...  

Abstract Background: Non-steroidal anti-inflammatory drugs (NSAID) have excellent anti-inflammatory and analgesic properties and are extensively used to treat post-traumatic or surgical musculoskeletal pain. Although an extensive literature exists on the administration of NSAID on animal bone healing, no systematic review and meta-analysis have yet been conducted to on the subject. Such work is important as it can identify the key histomorphometric and biomechanics characteristics during the process of fracture healing and provide comparative information regarding different factors that may affect this process after NSAID administration.Methods: We performed a systematic review and meta-analysis of animal studies to estimate the effect of NSAID administration after bone fracture on healing outcomes. We searched eight databases without limiting the search to starting date up to August 1, 2017 for articles on fractured bone healing in animal models in which NSAID were administered.Results: Out of 5,818 articles screened, 45 were included and three common bone healing outcomes were analysed: biomechanical properties (maximum force to break, stiffness, and work-to-failure), micro-computed tomography (µ-CT), and histomorphometric measurements. The studies were generally of low-quality scores because crucial information, especially concerningrandomization, blinding, and allocation concealment, was poorly reported. Our results show that the negative effects of NSAID after bone fracture on certain biomechanical properties of the healing bones was not statistically significant in mice compared with other animals, in females compared with males, and in younger compared with older animals.Conclusion: The findings suggest that NSAID should be administered with caution in patients with bone fractures or in those who undergo certain orthopedic surgical procedures until prospective human clinical studies can be conducted.Systematic review registration: the protocol published and registered in SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) in 2017, https://www.radboudumc.nl/getmedia/757ec408-7a9e-4635-8233-ae951effea54/Non-Steroidal-Anti-inflammatory-Drugs-and-bone-healing-in-animal-Models-Systematic-Review-and-Meta-Analysis.aspx


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Haider Al-Waeli ◽  
Ana Paula Reboucas ◽  
Alaa Mansour ◽  
Martin Morris ◽  
Faleh Tamimi ◽  
...  

Abstract Background Non-steroidal anti-inflammatory drugs (NSAID) have excellent anti-inflammatory and analgesic properties and are extensively used to treat post-traumatic or surgical musculoskeletal pain. Although an extensive literature exists on the administration of NSAID on animal bone healing, no systematic review and meta-analysis of animal studies that investigate the effect of NSAID administration on bone fracture healing. Objective of this study is to conduct a systematic review and meta-analysis to estimate the effect of NSAIDs administration on bone healing biomechanical and histomorphometric measurements in different animal models after bone fracture surgery. Methods We performed a systematic review and meta-analysis of animal studies to estimate the effect of NSAID administration after bone fracture on healing outcomes. We searched eight databases without limiting the search to starting date up to 1 February 2021 for articles on fractured bone healing in animal models in which NSAID were administered. Results Out of 6732 articles screened, 47 were included and 3 common bone healing outcomes were analysed: biomechanical properties (maximum force to break, stiffness, and work-to-failure), micro-computed tomography (μ-CT), and histomorphometric measurements. The studies were generally of low-quality scores because crucial information, especially concerning randomization, blinding, and allocation concealment, was poorly reported. Our results show that the negative effects of NSAID after bone fracture on certain biomechanical properties of the healing bones was not statistically significant in mice compared with other animals, in females compared with males, and in younger compared with older animals. Conclusion The findings demonstrated that NSAIDs administration decreased the biomechanical properties of healing bones after fracture surgery in comparison to the control group. Moreover, different effect on certain outcomes was detected among different sites, sex of the animals, and the time of assessment. Trial registration Protocol published and registered in SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) in 2017, https://www.radboudumc.nl/getmedia/757ec408-7a9e-4635-8233-ae951effea54/Non-Steroidal-Anti-inflammatory-Drugs-and-bone-healing-in-animal-Models-Systematic-Review-and-Meta-Analysis.aspx


2019 ◽  
Vol 14 (6) ◽  
pp. 504-518 ◽  
Author(s):  
Dilcele Silva Moreira Dziedzic ◽  
Bassam Felipe Mogharbel ◽  
Priscila Elias Ferreira ◽  
Ana Carolina Irioda ◽  
Katherine Athayde Teixeira de Carvalho

This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords “ADIPOSE”, “CELLS”, and “PERIODONTAL”, with the Boolean operator “AND”. A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.


2016 ◽  
Vol 11 (6) ◽  
pp. 494-504 ◽  
Author(s):  
Jessica S. Hayes ◽  
Cynthia M. Coleman

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Gabriela Elis Wachholz ◽  
Julia do Amaral Gomes ◽  
Juliano André Boquett ◽  
Fernanda Sales Luiz Vianna ◽  
Lavínia Schuler-Faccini ◽  
...  

Abstract Background Due to the diversity of studies in animal models reporting that molecular mechanisms are involved in the teratogenic effect of the Zika virus (ZIKV), the objective of the present study is to evaluate the methodological quality of these studies, as well as to demonstrate which genes and which molecular pathways are affected by ZIKV in different animal models. Methods This search will be performed in four databases: PubMed/MEDLINE, EMBASE, Web of Science, and Scopus, as well as in the grey literature. The studies selection process will be reported through the PRISMA Statement diagram model. All studies describing the molecular mechanisms possibly involved in the development of malformations caused by embryonic/fetal ZIKV exposure in animal models with an appropriate control group and methodology will be included (including, for instance, randomized and non-randomized studies). All animals used as experimental models for ZIKV teratogenesis may be included as long as exposure to the virus occurred during the embryonic/fetal period. From the selected studies, data will be extracted using a previously prepared standard form. Bias risk evaluation will be conducted following the SYRCLE’s Risk of Bias tool. All data obtained will be tabulated and organized by outcomes (morphological and molecular). Discussion With the proposed systematic review, we expect to present results about the methodological quality of the published studies with animal models that investigated the molecular mechanisms involved in the teratogenic effect of ZIKV, as well as to show the studies with greater reliability. Systematic review registration PROSPERO CRD42019157316


Sign in / Sign up

Export Citation Format

Share Document