Developing Machine Learning Models for Predicting Intensive Care Unit Resource Use During the COVID-19 Pandemic: Experiences from a Bi-Regional Health Care System Covering 2.5 Million Citizens in Denmark

2021 ◽  
Author(s):  
Stephan Sloth Lorenzen ◽  
Mads Nielsen ◽  
Espen Jimenez-Solem ◽  
Tonny Studsgaard Petersen ◽  
Anders Perner ◽  
...  
2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Antonin Dauvin ◽  
Carolina Donado ◽  
Patrik Bachtiger ◽  
Ke-Chun Huang ◽  
Christopher Martin Sauer ◽  
...  

AbstractPatients admitted to the intensive care unit frequently have anemia and impaired renal function, but often lack historical blood results to contextualize the acuteness of these findings. Using data available within two hours of ICU admission, we developed machine learning models that accurately (AUC 0.86–0.89) classify an individual patient’s baseline hemoglobin and creatinine levels. Compared to assuming the baseline to be the same as the admission lab value, machine learning performed significantly better at classifying acute kidney injury regardless of initial creatinine value, and significantly better at predicting baseline hemoglobin value in patients with admission hemoglobin of <10 g/dl.


2021 ◽  
Vol 8 ◽  
Author(s):  
Longxiang Su ◽  
Zheng Xu ◽  
Fengxiang Chang ◽  
Yingying Ma ◽  
Shengjun Liu ◽  
...  

Background: Early prediction of the clinical outcome of patients with sepsis is of great significance and can guide treatment and reduce the mortality of patients. However, it is clinically difficult for clinicians.Methods: A total of 2,224 patients with sepsis were involved over a 3-year period (2016–2018) in the intensive care unit (ICU) of Peking Union Medical College Hospital. With all the key medical data from the first 6 h in the ICU, three machine learning models, logistic regression, random forest, and XGBoost, were used to predict mortality, severity (sepsis/septic shock), and length of ICU stay (LOS) (&gt;6 days, ≤ 6 days). Missing data imputation and oversampling were completed on the dataset before introduction into the models.Results: Compared to the mortality and LOS predictions, the severity prediction achieved the best classification results, based on the area under the operating receiver characteristics (AUC), with the random forest classifier (sensitivity = 0.65, specificity = 0.73, F1 score = 0.72, AUC = 0.79). The random forest model also showed the best overall performance (mortality prediction: sensitivity = 0.50, specificity = 0.84, F1 score = 0.66, AUC = 0.74; LOS prediction: sensitivity = 0.79, specificity = 0.66, F1 score = 0.69, AUC = 0.76) among the three models. The predictive ability of the SOFA score itself was inferior to that of the above three models.Conclusions: Using the random forest classifier in the first 6 h of ICU admission can provide a comprehensive early warning of sepsis, which will contribute to the formulation and management of clinical decisions and the allocation and management of resources.


2019 ◽  
Author(s):  
Longxiang Su ◽  
Chun Liu ◽  
Dongkai Li ◽  
Jie He ◽  
Fanglan Zheng ◽  
...  

BACKGROUND Heparin is one of the most commonly used medications in intensive care units. In clinical practice, the use of a weight-based heparin dosing nomogram is standard practice for the treatment of thrombosis. Recently, machine learning techniques have dramatically improved the ability of computers to provide clinical decision support and have allowed for the possibility of computer generated, algorithm-based heparin dosing recommendations. OBJECTIVE The objective of this study was to predict the effects of heparin treatment using machine learning methods to optimize heparin dosing in intensive care units based on the predictions. Patient state predictions were based upon activated partial thromboplastin time in 3 different ranges: subtherapeutic, normal therapeutic, and supratherapeutic, respectively. METHODS Retrospective data from 2 intensive care unit research databases (Multiparameter Intelligent Monitoring in Intensive Care III, MIMIC-III; e–Intensive Care Unit Collaborative Research Database, eICU) were used for the analysis. Candidate machine learning models (random forest, support vector machine, adaptive boosting, extreme gradient boosting, and shallow neural network) were compared in 3 patient groups to evaluate the classification performance for predicting the subtherapeutic, normal therapeutic, and supratherapeutic patient states. The model results were evaluated using precision, recall, F1 score, and accuracy. RESULTS Data from the MIMIC-III database (n=2789 patients) and from the eICU database (n=575 patients) were used. In 3-class classification, the shallow neural network algorithm performed the best (F1 scores of 87.26%, 85.98%, and 87.55% for data set 1, 2, and 3, respectively). The shallow neural network algorithm achieved the highest F1 scores within the patient therapeutic state groups: subtherapeutic (data set 1: 79.35%; data set 2: 83.67%; data set 3: 83.33%), normal therapeutic (data set 1: 93.15%; data set 2: 87.76%; data set 3: 84.62%), and supratherapeutic (data set 1: 88.00%; data set 2: 86.54%; data set 3: 95.45%) therapeutic ranges, respectively. CONCLUSIONS The most appropriate model for predicting the effects of heparin treatment was found by comparing multiple machine learning models and can be used to further guide optimal heparin dosing. Using multicenter intensive care unit data, our study demonstrates the feasibility of predicting the outcomes of heparin treatment using data-driven methods, and thus, how machine learning–based models can be used to optimize and personalize heparin dosing to improve patient safety. Manual analysis and validation suggested that the model outperformed standard practice heparin treatment dosing.


2019 ◽  
Vol 45 (3) ◽  
pp. 242-248 ◽  
Author(s):  
Susan B. Fowler ◽  
Christian A. Rosado ◽  
Jennifer Jones ◽  
Suzanne Ashworth ◽  
Darlene Adams

2021 ◽  
Author(s):  
Celia ALVAREZ-ROMERO ◽  
Alicia MARTÍNEZ-GARCÍA ◽  
Jara Eloisa TERNERO-VEGA ◽  
Pablo DÍAZ-JIMÉNEZ ◽  
Carlos JIMÉNEZ-DE-JUAN ◽  
...  

BACKGROUND Due to the nature of health data, its sharing and reuse for research are limited by legal, technical and ethical implications. In this sense, to address that challenge, and facilitate and promote the discovery of scientific knowledge, the FAIR (Findable, Accessible, Interoperable, and Reusable) principles help organizations to share research data in a secure, appropriate and useful way for other researchers. OBJECTIVE The objective of this study was the FAIRification of health research existing datasets and applying a federated machine learning architecture on top of the FAIRified datasets of different health research performing organizations. The whole FAIR4Health solution was validated through the assessment of the generated model for real-time prediction of 30-days readmission risk in patients with Chronic Obstructive Pulmonary Disease (COPD). METHODS The application of the FAIR principles in health research datasets in three different health care settings enabled a retrospective multicenter study for the generation of federated machine learning models, aiming to develop the early prediction model for 30-days readmission risk in COPD patients. This prediction model was implemented upon the FAIR4Health platform and, finally, an observational prospective study with 30-days follow-up was carried out in two health care centers from different countries. The same inclusion and exclusion criteria were used in both retrospective and prospective parts of the study. RESULTS The prediction model for the 30-days hospital readmission risk was trained using the retrospective data of 4.944 COPD patients. The assessment of the prediction model was performed using the data of 100 recruited (22 from Spain and 78 from Serbia) out of 2070 observed (records viewed) patients in total for the observational prospective study from April 2021 to September 2021. The significant accuracy (0.98) and precision (0.25) of the prediction model generated upon the FAIR4Health platform was observed and, as a result, the generated prediction of 30-day readmission risk was confirmed in 87% of the cases. CONCLUSIONS A clinical validation was demonstrated through the implementation of federated machine learning models on top of the FAIRified datasets from different health research performing organizations, providing an assessment for predicting 30-days readmission risk in COPD patients. This demonstration allowed to state the relevance and need of implementing a FAIR data policy to facilitate data sharing and reuse in health research.


2012 ◽  
Vol 27 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Yael Schenker ◽  
Douglas B. White ◽  
David A. Asch ◽  
Jeremy M. Kahn

Sign in / Sign up

Export Citation Format

Share Document