Study on Influence Factors of Horizontal Ground Heat Exchanger Performance Considering Climatic Conditions and Groundwater Flow

2021 ◽  
Author(s):  
Yu Shi ◽  
Xiaojiang Li ◽  
Xianzhi Song ◽  
Qiliang Cui ◽  
Guofeng Song ◽  
...  
Author(s):  
Balaji Kumar

Abstract The research collection aims at finding the various possible opportunities for the effective integration of shallow geothermal energy (SGE) to decrease the energy demand in the built environment and to reduce emission associated with it. The integration of SGE with heat pump using pipe network is extensively reviewed. The open loop and closed loop (vertical, horizontal, energy piles) pipe networks are the most common type of ground heat exchanging methods. The objective of the review is to improve the heat exchanger effectiveness through various design aspects according to the local climatic conditions. This comprehensive review part II contains the research details pertaining to the last two decades about ground heat exchangers (geometrical aspects, borehole material, grout material, thermal response test, analytical and numerical models). Also, the factors influencing the ground heat exchanger's performance such as heat transfer fluid, groundwater flow, and soil properties are discussed in detail. This paper highlights the recent research findings and a potential gap in the ground heat exchanger.


2021 ◽  
Vol 2021.74 (0) ◽  
pp. B22
Author(s):  
Kanaha MORI ◽  
Koutaro TSUBAKI ◽  
Retsu HARADA ◽  
Yukari KAI ◽  
Yukari WATASE ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


Sign in / Sign up

Export Citation Format

Share Document