Deep Neural Network-Based Hybrid Modeling and Experimental Validation for a Full-Scale Bio-Fermentation Process: Identification of Time-Varying Dependencies Among Parameters

2021 ◽  
Author(s):  
Parth Shah ◽  
Ziyan Sheriff ◽  
Mohammed Saad Faizan Bangi ◽  
Costas Kravaris ◽  
Joseph Kwon ◽  
...  
2020 ◽  
Vol 24 ◽  
pp. 233121652094307
Author(s):  
Josef Schlittenlacher ◽  
Richard E. Turner ◽  
Brian C. J. Moore

The “time-varying loudness” (TVL) model of Glasberg and Moore calculates “instantaneous loudness” every 1 ms, and this is used to generate predictions of short-term loudness, the loudness of a short segment of sound, such as a word in a sentence, and of long-term loudness, the loudness of a longer segment of sound, such as a whole sentence. The calculation of instantaneous loudness is computationally intensive and real-time implementation of the TVL model is difficult. To speed up the computation, a deep neural network (DNN) was trained to predict instantaneous loudness using a large database of speech sounds and artificial sounds (tones alone and tones in white or pink noise), with the predictions of the TVL model as a reference (providing the “correct” answer, specifically the loudness level in phons). A multilayer perceptron with three hidden layers was found to be sufficient, with more complex DNN architecture not yielding higher accuracy. After training, the deviations between the predictions of the TVL model and the predictions of the DNN were typically less than 0.5 phons, even for types of sounds that were not used for training (music, rain, animal sounds, and washing machine). The DNN calculates instantaneous loudness over 100 times more quickly than the TVL model. Possible applications of the DNN are discussed.


Author(s):  
David T. Wang ◽  
Brady Williamson ◽  
Thomas Eluvathingal ◽  
Bruce Mahoney ◽  
Jennifer Scheler

Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


2020 ◽  
Author(s):  
Ala Supriya ◽  
Chiluka Venkat ◽  
Aliketti Deepak ◽  
GV Hari Prasad

Sign in / Sign up

Export Citation Format

Share Document