scholarly journals On the distribution of lattice points on hyperbolic circles

2021 ◽  
Vol 15 (9) ◽  
pp. 2357-2380
Author(s):  
Dimitrios Chatzakos ◽  
Pär Kurlberg ◽  
Stephen Lester ◽  
Igor Wigman
Keyword(s):  
Author(s):  
N. A. Balonin ◽  
M. B. Sergeev ◽  
J. Seberry ◽  
O. I. Sinitsyna

Introduction: The Hadamard conjecture about the existence of Hadamard matrices in all orders multiple of 4, and the Gauss problem about the number of points in a circle are among the most important turning points in the development of mathematics. They both stimulated the development of scientific schools around the world with an immense amount of works. There are substantiations that these scientific problems are deeply connected. The number of Gaussian points (Z3 lattice points) on a spheroid, cone, paraboloid or parabola, along with their location, determines the number and types of Hadamard matrices.Purpose: Specification of the upper and lower bounds for the number of Gaussian points (with odd coordinates) on a spheroid depending on the problem size, in order to specify the Gauss theorem (about the solvability of quadratic problems in triangular numbers by projections onto the Liouville plane) with estimates for the case of Hadamard matrices. Methods: The authors, in addition to their previous ideas about proving the Hadamard conjecture on the base of a one-to-one correspondence between orthogonal matrices and Gaussian points, propose one more way, using the properties of generalized circles on Z3 .Results: It is proved that for a spheroid, the lower bound of all Gaussian points with odd coordinates is equal to the equator radius R, the upper limit of the points located above the equator is equal to the length of this equator L=2πR, and the total number of points is limited to 2L. Due to the spheroid symmetry in the sector with positive coordinates (octant), this gives the values of R/8 and L/4. Thus, the number of Gaussian points with odd coordinates does not exceed the border perimeter and is no less than the relative share of the sector in the total volume of the figure.Practical significance: Hadamard matrices associated with lattice points have a direct practical significance for noise-resistant coding, compression and masking of video information.


1948 ◽  
Vol os-19 (1) ◽  
pp. 238-248 ◽  
Author(s):  
S. BOCHNER ◽  
K. CHANDRASEKHARAN
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1145
Author(s):  
Prem. C. Pandey ◽  
Shubhangi Shukla ◽  
Roger J. Narayan

Prussian blue nanoparticles (PBN) exhibit selective fluorescence quenching behavior with heavy metal ions; in addition, they possess characteristic oxidant properties both for liquid–liquid and liquid–solid interface catalysis. Here, we propose to study the detection and efficient removal of toxic arsenic(III) species by materializing these dual functions of PBN. A sophisticated PBN-sensitized fluorometric switching system for dosage-dependent detection of As3+ along with PBN-integrated SiO2 platforms as a column adsorbent for biphasic oxidation and elimination of As3+ have been developed. Colloidal PBN were obtained by a facile two-step process involving chemical reduction in the presence of 2-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (EETMSi) and cyclohexanone as reducing agents, while heterogeneous systems were formulated via EETMSi, which triggered in situ growth of PBN inside the three-dimensional framework of silica gel and silica nanoparticles (SiO2). PBN-induced quenching of the emission signal was recorded with an As3+ concentration (0.05–1.6 ppm)-dependent fluorometric titration system, owing to the potential excitation window of PBN (at 480–500 nm), which ultimately restricts the radiative energy transfer. The detection limit for this arrangement is estimated around 0.025 ppm. Furthermore, the mesoporous and macroporous PBN-integrated SiO2 arrangements might act as stationary phase in chromatographic studies to significantly remove As3+. Besides physisorption, significant electron exchange between Fe3+/Fe2+ lattice points and As3+ ions enable complete conversion to less toxic As5+ ions with the repeated influx of mobile phase. PBN-integrated SiO2 matrices were successfully restored after segregating the target ions. This study indicates that PBN and PBN-integrated SiO2 platforms may enable straightforward and low-cost removal of arsenic from contaminated water.


Author(s):  
Ansgar Freyer ◽  
Martin Henk

AbstractGardner et al. posed the problem to find a discrete analogue of Meyer’s inequality bounding from below the volume of a convex body by the geometric mean of the volumes of its slices with the coordinate hyperplanes. Motivated by this problem, for which we provide a first general bound, we study in a more general context the question of bounding the number of lattice points of a convex body in terms of slices, as well as projections.


1962 ◽  
Vol 16 (79) ◽  
pp. 282-282 ◽  
Author(s):  
W. Fraser ◽  
C. C. Gotlieb
Keyword(s):  

2008 ◽  
Vol 41 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Václav Holý ◽  
Paul F. Fewster

A new method is presented for a calculation of the reciprocal-space distribution of X-ray diffracted intensity along a crystal truncation rod. In contrast to usual kinematical or dynamical approaches, the method is correct both in the reciprocal-lattice points and between them. In the method, the crystal is divided into a sequence of very thin slabs parallel to the surface; in contrast to the well known Darwin dynamical theory, the electron density in the slabs is constant along the surface normal. The diffracted intensity is calculated by a matrix formalism based on the Fresnel reflection and transmission coefficients. The method is applicable for any polarization of the primary beam and also in a non-coplanar scattering geometry.


2001 ◽  
Vol 13 (2) ◽  
Author(s):  
V. Bentkus ◽  
F. Götze
Keyword(s):  

2010 ◽  
Vol 19 (5-6) ◽  
pp. 791-817 ◽  
Author(s):  
CATHERINE GREENHILL ◽  
SVANTE JANSON ◽  
ANDRZEJ RUCIŃSKI

Let G be a fixed connected multigraph with no loops. A random n-lift of G is obtained by replacing each vertex of G by a set of n vertices (where these sets are pairwise disjoint) and replacing each edge by a randomly chosen perfect matching between the n-sets corresponding to the endpoints of the edge. Let XG be the number of perfect matchings in a random lift of G. We study the distribution of XG in the limit as n tends to infinity, using the small subgraph conditioning method.We present several results including an asymptotic formula for the expectation of XG when G is d-regular, d ≥ 3. The interaction of perfect matchings with short cycles in random lifts of regular multigraphs is also analysed. Partial calculations are performed for the second moment of XG, with full details given for two example multigraphs, including the complete graph K4.To assist in our calculations we provide a theorem for estimating a summation over multiple dimensions using Laplace's method. This result is phrased as a summation over lattice points, and may prove useful in future applications.


Sign in / Sign up

Export Citation Format

Share Document