scholarly journals Extrinsic curvature and conformal Gauss–Bonnet for four-manifolds with corner

2021 ◽  
Vol 314 (2) ◽  
pp. 411-424
Author(s):  
Stephen E. McKeown
Author(s):  
Dusa McDuff ◽  
Dietmar Salamon

This chapter examines various ways to construct symplectic manifolds and submanifolds. It begins by studying blowing up and down in both the complex and the symplectic contexts. The next section is devoted to a discussion of fibre connected sums and describes Gompf’s construction of symplectic four-manifolds with arbitrary fundamental group. The chapter also contains an exposition of Gromov’s telescope construction, which shows that for open manifolds the h-principle rules and the inclusion of the space of symplectic forms into the space of nondegenerate 2-forms is a homotopy equivalence. The final section outlines Donaldson’s construction of codimension two symplectic submanifolds and explains the associated decompositions of the ambient manifold.


2011 ◽  
Vol 20 (01) ◽  
pp. 59-75 ◽  
Author(s):  
EFRAIN ROJAS

The field equations associated to Born–Infeld type brane theories are studied by using auxiliary variables. This approach hinges on the fact, that the expressions defining the physical and geometrical quantities describing the worldvolume are varied independently. The general structure of the Born–Infeld type theories for branes contains the square root of a determinant of a combined matrix between the induced metric on the worldvolume swept out by the brane and a symmetric/antisymmetric tensor depending on gauge, matter or extrinsic curvature terms taking place on the worldvolume. The higher-order curvature terms appearing in the determinant form come to play in competition with other effective brane models. Additionally, we suggest a Born–Infeld–Einstein type action for branes where the higher-order curvature content is provided by the worldvolume Ricci tensor. This action provides an alternative description of the dynamics of braneworld scenarios.


2002 ◽  
Vol 17 (20) ◽  
pp. 2762-2762
Author(s):  
E. GOURGOULHON ◽  
J. NOVAK

It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-"metric" (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this "metric", of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.


2002 ◽  
Vol 13 (05) ◽  
pp. 533-548 ◽  
Author(s):  
NICOLAS GINOUX ◽  
BERTRAND MOREL

We give lower bounds for the eigenvalues of the submanifold Dirac operator in terms of intrinsic and extrinsic curvature expressions. We also show that the limiting cases give rise to a class of spinor fields generalizing that of Killing spinors. We conclude by translating these results in terms of intrinsic twisted Dirac operators.


Author(s):  
Simon Davis

In this paper, connections between the path integrals for four-dimensional quantum gravity and string theory are emphasized. It is shown that there is a natural relation between these two path integrals based on the theorems on embeddings of two-dimensional surfaces in four dimensions and four-dimensional manifolds in ten dimensions. The isometry groups of the three-geometries that are spatial hypersurfaces confomally embedded in the four-manifolds are required to be subgroups of [Formula: see text], which is the invariance group of the Pfaffian differential system satisfied by one form in the cotangent bundles on the four-manifolds. Based on this and other physical conditions, the three-geometries are restricted to be [Formula: see text], [Formula: see text] and [Formula: see text] with a boundary, which may be included in the quantum gravitational path integral over four-manifolds which are closed at initial times followed by an exponential expansion compatible with supersymmetry.


2018 ◽  
Vol 21 (1) ◽  
pp. 257-270 ◽  
Author(s):  
Jennifer Hom ◽  
Tye Lidman

Sign in / Sign up

Export Citation Format

Share Document