scholarly journals Structure and function of IP3 receptor, Ca2+ channel on the endoplasmic reticulum

2003 ◽  
Vol 43 (supplement) ◽  
pp. S8
Author(s):  
K. Mikoshiba
2004 ◽  
Vol 32 (5) ◽  
pp. 655-658 ◽  
Author(s):  
C.E. Jessop ◽  
S. Chakravarthi ◽  
R.H. Watkins ◽  
N.J. Bulleid

Native disulphide bonds are essential for the structure and function of many membrane and secretory proteins. Disulphide bonds are formed, reduced and isomerized in the endoplasmic reticulum of mammalian cells by a family of oxidoreductases, which includes protein disulphide isomerase (PDI), ERp57, ERp72, P5 and PDIR. This review will discuss how these enzymes are maintained in either an oxidized redox state that allows them to form disulphide bonds in substrate proteins or a reduced form that allows them to perform isomerization and reduction reactions, how these opposing pathways may co-exist within the same compartment and why so many oxidoreductases exist when PDI alone can perform all three of these functions.


2020 ◽  
Vol 21 (8) ◽  
pp. 2764
Author(s):  
Taremekedzwa Allan Sanyanga ◽  
Özlem Tastan Bishop

Human carbonic anhydrase 8 (CA-VIII) is an acatalytic isoform of the α -CA family. Though the protein cannot hydrate CO2, CA-VIII is essential for calcium (Ca2+) homeostasis within the body, and achieves this by allosterically inhibiting the binding of inositol 1,4,5-triphosphate (IP3) to the IP3 receptor type 1 (ITPR1) protein. However, the mechanism of interaction of CA-VIII to ITPR1 is not well understood. In addition, functional defects to CA-VIII due to non-synonymous single nucleotide polymorphisms (nsSNVs) result in Ca2+ dysregulation and the development of the phenotypes such as cerebellar ataxia, mental retardation and disequilibrium syndrome 3 (CAMRQ3). The pathogenesis of CAMRQ3 is also not well understood. The structure and function of CA-VIII was characterised, and pathogenesis of CAMRQ3 investigated. Structural and functional characterisation of CA-VIII was conducted through SiteMap and CPORT to identify potential binding site residues. The effects of four pathogenic nsSNVs, S100A, S100P, G162R and R237Q, and two benign S100L and E109D variants on CA-VIII structure and function was then investigated using molecular dynamics (MD) simulations, dynamic cross correlation (DCC) and dynamic residue network (DRN) analysis. SiteMap and CPORT analyses identified 38 unique CA-VIII residues that could potentially bind to ITPR1. MD analysis revealed less conformational sampling within the variant proteins and highlighted potential increases to variant protein rigidity. Dynamic cross correlation (DCC) showed that wild-type (WT) protein residue motion is predominately anti-correlated, with variant proteins showing no correlation to greater residue correlation. DRN revealed variant-associated increases to the accessibility of the N-terminal binding site residues, which could have implications for associations with ITPR1, and further highlighted differences to the mechanism of benign and pathogenic variants. SNV presence is associated with a reduction to the usage of Trp37 in all variants, which has implications for CA-VIII stability. The differences to variant mechanisms can be further investigated to understand pathogenesis of CAMRQ3, enhancing precision medicine-related studies into CA-VIII.


2018 ◽  
Vol 46 (03) ◽  
pp. 633-650 ◽  
Author(s):  
Jongwan Kim ◽  
Md. Nazmul Haque ◽  
Tae-Won Goo ◽  
Il Soo Moon

In the brain, endoplasmic reticulum (ER) stress results in synaptic dysfunction and eventually leads to neurodegeneration. Allomyrina dichotoma larvae are a Chinese ethnomedicine and are widely used in East Asia. In the present study, we investigated the ability of ethanol extract of A. dichotoma larvae (ADE) to improve synaptic structure and function by activating unfolded protein response (UPR) under ER stress in animal and neuron culture models. ER stress was induced in obese mice fed a high fat diet (HFD) or by treating dissociated cultures of rat embryonic (E19) hippocampal neurons with tunicamycin (TM). Western blot and real-time or conventional RT-PCR were performed to analyze the expressions of ER stress marker proteins. In dissociated hippocampal cultures, immunocytochemistry was performed for synaptic proteins, and cultures were stained with styryl dye FM1-43 to assess presynaptic activities. In HFD-fed obese mice, ADE efficiently reduced the expressions of ER stress markers, such as, xbp-1, chop, atf4, erdi4, and eIf2a, and those of the ER chaperone/foldases Bip/grp78, Ero-1l, and PDI. Unconventionally spliced xbp-1s mRNA was not detected. In primary rat hippocampal cultures under ER stress, ADE significantly lowered the nuclear expression of CHOP, inhibited the downregulations of postsynaptic proteins, such as, GluN2A, GluN2B, and PSD-95, and maintained the pool size of recycling presynaptic vesicles. The study shows that ADE potently suppressed the induction of ER stress and maintained the structure and function of hippocampal neurons, and suggests that ADE is a potentially valuable food supplement and preventive therapeutic for ER stress-related nervous disorders.


2021 ◽  
Vol 22 (12) ◽  
pp. 6284
Author(s):  
Morgana K. Kellogg ◽  
Sarah C. Miller ◽  
Elena B. Tikhonova ◽  
Andrey L. Karamyshev

Signal recognition particle (SRP) is an RNA and protein complex that exists in all domains of life. It consists of one protein and one noncoding RNA in some bacteria. It is more complex in eukaryotes and consists of six proteins and one noncoding RNA in mammals. In the eukaryotic cytoplasm, SRP co-translationally targets proteins to the endoplasmic reticulum and prevents misfolding and aggregation of the secretory proteins in the cytoplasm. It was demonstrated recently that SRP also possesses an earlier unknown function, the protection of mRNAs of secretory proteins from degradation. In this review, we analyze the progress in studies of SRPs from different organisms, SRP biogenesis, its structure, and function in protein targeting and mRNA protection.


Sign in / Sign up

Export Citation Format

Share Document