scholarly journals S10H3 Utilization of X-ray free electron laser in biophysics(State-of-the-art Techniques to Build the Coming Generation in Biophysics: Novel Approaches to Revealing Molecular Mechanisms of Cells and Proteins)

2007 ◽  
Vol 47 (supplement) ◽  
pp. S14
Author(s):  
Masayoshi Nakasako
IUCrJ ◽  
2015 ◽  
Vol 2 (4) ◽  
pp. 409-420 ◽  
Author(s):  
Maike Bublitz ◽  
Karol Nass ◽  
Nikolaj D. Drachmann ◽  
Anders J. Markvardsen ◽  
Matthias J. Gutmann ◽  
...  

Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.


2016 ◽  
Vol 23 (4) ◽  
pp. 861-868 ◽  
Author(s):  
Eduard Prat ◽  
Marco Calvi ◽  
Romain Ganter ◽  
Sven Reiche ◽  
Thomas Schietinger ◽  
...  

An optimization of the undulator layout of X-ray free-electron-laser (FEL) facilities based on placing small chicanes between the undulator modules is presented. The installation of magnetic chicanes offers the following benefits with respect to state-of-the-art FEL facilities: reduction of the required undulator length to achieve FEL saturation, improvement of the longitudinal coherence of the FEL pulses, and the ability to produce shorter FEL pulses with higher power levels. Numerical simulations performed for the soft X-ray beamline of the SwissFEL facility show that optimizing the advantages of the layout requires shorter undulator modules than the standard ones. This proposal allows a very compact undulator beamline that produces fully coherent FEL pulses and it makes possible new kinds of experiments that require very short and high-power FEL pulses.


2011 ◽  
Vol 131 (2) ◽  
pp. 68-71
Author(s):  
Etsuo FUJIWARA ◽  
Eiichi ANAYAMA ◽  
Yuichiro KATSUTA ◽  
Toshiki IZUTANI ◽  
Daichi OKUHARA ◽  
...  

2014 ◽  
Vol 134 (12) ◽  
pp. 836-839
Author(s):  
Junichi INOUE ◽  
Yuji TANAKA ◽  
Yuki MATSUMOTO ◽  
Kensuke KANDA

Sign in / Sign up

Export Citation Format

Share Document