scholarly journals Reinforced temporal structure information for embedded utterance-based speaker recognition

Author(s):  
Anthony Larcher ◽  
Jean-François Bonastre ◽  
John S. D. Mason
Author(s):  
ESTHER LEVIN ◽  
ROBERTO PIERACCINI ◽  
ENRICO BOCCHIERI

Recently, much interest has been generated regarding speech recognition systems based on Hidden Markov Models (HMMs) and neural network (NN) hybrids. Such systems attempt to combine the best features of both models: the temporal structure of HMMs and the discriminative power of neural networks. In this work we establish one more relation between the HMM and the NN paradigms by introducing the time-warping network (TWN) that is a generalization of both an HMM-based recognizer and a backpropagation net. The basic element of such a network, a time- warping neuron, extends the operation of the formal neuron of a backpropagation network by warping the input pattern to match it optimally to its weights. We show that a single-layer network of TW neurons is equivalent to a Gaussian density HMM-based recognition system. This equivalent neural representation suggests ways to improve the discriminative power of this system by using backpropagation discriminative training, and/or by generalizing the structure of the recognizer to a multi-layer net. The performance of the proposed network was evaluated on a highly confusable, isolated word, multi-speaker recognition task. The results indicate that not only does the recognition performance improve, but the separation between classes is enhanced, allowing us to set up a rejection criterion to improve the confidence of the system.


2016 ◽  
Vol 113 (19) ◽  
pp. 5212-5217 ◽  
Author(s):  
T. Christina Zhao ◽  
Patricia K. Kuhl

Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants’ neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants’ neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants’ neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants’ ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing.


Author(s):  
Dezhi Wu

The purpose of this book is to provide useful user requirements for capturing and designing more extensive temporal structures within the current electronic calendar systems through a series of in-depth user studies. Chapter 5 presents the study results of two in-depth interviews with twenty professionals for identifying what types of temporal structures are being used in personal time management practices and possible design implications to further design the current electronic calendar tools. In order to deepen our understanding of how individual time management quality is related to the various temporal structures, it is necessary to conduct a much larger scale user study to further support the findings reported in Chapter 5. If we could possibly obtain solid support from a larger user study, we would be more confident to state that we need to enhance the design of the current electronic calendar systems through incorporating more extensive temporal structure features.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
J. Gjønnes ◽  
N. Bøe ◽  
K. Gjønnes

Structure information of high precision can be extracted from intentsity details in convergent beam patterns like the one reproduced in Fig 1. From low order reflections for small unit cell crystals,bonding charges, ionicities and atomic parameters can be derived, (Zuo, Spence and O’Keefe, 1988; Zuo, Spence and Høier 1989; Gjønnes, Matsuhata and Taftø, 1989) , but extension to larger unit cell ma seem difficult. The disks must then be reduced in order to avoid overlap calculations will become more complex and intensity features often less distinct Several avenues may be then explored: increased computational effort in order to handle the necessary many-parameter dynamical calculations; use of zone axis intensities at symmetry positions within the CBED disks, as in Figure 2 measurement of integrated intensity across K-line segments. In the last case measurable quantities which are well defined also from a theoretical viewpoint can be related to a two-beam like expression for the intensity profile:With as an effective Fourier potential equated to a gap at the dispersion surface, this intensity can be integrated across the line, with kinematical and dynamical limits proportional to and at low and high thickness respctively (Blackman, 1939).


Author(s):  
Kjersti Gjønnes ◽  
Jon Gjønnes

Electron diffraction intensities can be obtained at large scattering angles (sinθ/λ ≥ 2.0), and thus structure information can be collected in regions of reciprocal space that are not accessable with other diffraction methods. LACBED intensities in this range can be utilized for determination of accurate temperature factors or for refinement of coordinates. Such high index reflections can usually be treated kinematically or as a pertubed two-beam case. Application to Y Ba2Cu3O7 shows that a least square refinememt based on integrated intensities can determine temperature factors or coordinates.LACBED patterns taken in the (00l) systematic row show an easily recognisable pattern of narrow bands from reflections in the range 15 < l < 40 (figure 1). Integrated intensities obtained from measured intensity profiles after subtraction of inelastic background (figure 2) were used in the least square fit for determination of temperature factors and refinement of z-coordinates for the Ba- and Cu-atoms.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
D. E. Johnson ◽  
S. Csillag

Recently, the applications area of analytical electron microscopy has been extended to include the study of Extended Energy Loss Fine Structure (EXELFS). Modulations past an ionization edge in the energy loss spectrum (EXELFS), contain atomic fine structure information similar to Extended X-ray Absorbtion Fine Structure (EXAFS). At low momentum transfer the main contribution to these modulations comes from interference effects between the outgoing excited inner shell electron waves and electron waves backscattered from the surrounding atoms. The ability to obtain atomic fine structure information (such as interatomic distances) combined with the spatial resolution of an electron microscope is unique and makes EXELFS an important microanalytical technique.


Sign in / Sign up

Export Citation Format

Share Document