scholarly journals Spotsizer: High-throughput quantitative analysis of microbial growth

BioTechniques ◽  
2016 ◽  
Vol 61 (4) ◽  
Author(s):  
Leanne Bischof ◽  
Martin Převorovský ◽  
Charalampos Rallis ◽  
Daniel C. Jeffares ◽  
Yulia Arzhaeva ◽  
...  
2016 ◽  
Vol 14 (03) ◽  
pp. 1650007 ◽  
Author(s):  
Matthias Gerstgrasser ◽  
Sarah Nicholls ◽  
Michael Stout ◽  
Katherine Smart ◽  
Chris Powell ◽  
...  

Biolog phenotype microarrays (PMs) enable simultaneous, high throughput analysis of cell cultures in different environments. The output is high-density time-course data showing redox curves (approximating growth) for each experimental condition. The software provided with the Omnilog incubator/reader summarizes each time-course as a single datum, so most of the information is not used. However, the time courses can be extremely varied and often contain detailed qualitative (shape of curve) and quantitative (values of parameters) information. We present a novel, Bayesian approach to estimating parameters from Phenotype Microarray data, fitting growth models using Markov Chain Monte Carlo (MCMC) methods to enable high throughput estimation of important information, including length of lag phase, maximal “growth” rate and maximum output. We find that the Baranyi model for microbial growth is useful for fitting Biolog data. Moreover, we introduce a new growth model that allows for diauxic growth with a lag phase, which is particularly useful where Phenotype Microarrays have been applied to cells grown in complex mixtures of substrates, for example in industrial or biotechnological applications, such as worts in brewing. Our approach provides more useful information from Biolog data than existing, competing methods, and allows for valuable comparisons between data series and across different models.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2120
Author(s):  
Jessica Frigerio ◽  
Giulia Agostinetto ◽  
Valerio Mezzasalma ◽  
Fabrizio De De Mattia ◽  
Massimo Labra ◽  
...  

Medicinal plants have been widely used in traditional medicine due to their therapeutic properties. Although they are mostly used as herbal infusion and tincture, employment as ingredients of food supplements is increasing. However, fraud and adulteration are widespread issues. In our study, we aimed at evaluating DNA metabarcoding as a tool to identify product composition. In order to accomplish this, we analyzed fifteen commercial products with DNA metabarcoding, using two barcode regions: psbA-trnH and ITS2. Results showed that on average, 70% (44–100) of the declared ingredients have been identified. The ITS2 marker appears to identify more species (n = 60) than psbA-trnH (n = 35), with an ingredients’ identification rate of 52% versus 45%, respectively. Some species are identified only by one marker rather than the other. Additionally, in order to evaluate the quantitative ability of high-throughput sequencing (HTS) to compare the plant component to the corresponding assigned sequences, in the laboratory, we created six mock mixtures of plants starting both from biomass and gDNA. Our analysis also supports the application of DNA metabarcoding for a relative quantitative analysis. These results move towards the application of HTS analysis for studying the composition of herbal teas for medicinal plants’ traceability and quality control.


2012 ◽  
Vol 60 (11) ◽  
pp. 844-853 ◽  
Author(s):  
Emily J. Greenspan ◽  
Hanjoo Lee ◽  
Marcin Dyba ◽  
Jishen Pan ◽  
Kepher Mekambi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document