scholarly journals The Inhomogeneous Gaussian Free Field, with application to ground state correlations of trapped 1d Bose gases

2018 ◽  
Vol 4 (6) ◽  
Author(s):  
Yannis Brun ◽  
Jerome Dubail

This formalism is then applied to the study of ground state correlations of the Lieb-Liniger gas trapped in an external potential V(x)V(x). Relations with previous works on inhomogeneous Luttinger liquids are discussed. The main innovation here is in the identification of local observables \hat{O} (x)Ô(x) in the microscopic model with their field theory counterparts \partial_x h, e^{i h(x)}, e^{-i h(x)}∂xh,eih(x),e−ih(x), etc., which involve non-universal coefficients that themselves depend on position — a fact that, to the best of our knowledge, was overlooked in previous works on correlation functions of inhomogeneous Luttinger liquids —, and that can be calculated thanks to Bethe Ansatz form factors formulae available for the homogeneous Lieb-Liniger model. Combining those position-dependent coefficients with the correlation functions of the IGFF, ground state correlation functions of the trapped gas are obtained. Numerical checks from DMRG are provided for density-density correlations and for the one-particle density matrix, showing excellent agreement.

1993 ◽  
Vol 08 (23) ◽  
pp. 4031-4053
Author(s):  
HOVIK D. TOOMASSIAN

The structure of the free field representation and some four-point correlation functions of the SU(3) conformal field theory are considered.


2018 ◽  
Vol 2020 (3) ◽  
pp. 883-913 ◽  
Author(s):  
Vadim Gorin ◽  
Adam W Marcus

Abstract Three operations on eigenvalues of real/complex/quaternion (corresponding to $\beta =1,2,4$) matrices, obtained from cutting out principal corners, adding, and multiplying matrices, can be extrapolated to general values of $\beta>0$ through associated special functions. We show that the $\beta \to \infty $ limit for these operations leads to the finite free projection, additive convolution, and multiplicative convolution, respectively. The limit is the most transparent for cutting out the corners, where the joint distribution of the eigenvalues of principal corners of a uniformly-random general $\beta $ self-adjoint matrix with fixed eigenvalues is known as the $\beta $-corners process. We show that as $\beta \to \infty $ these eigenvalues crystallize on an irregular lattice consisting of the roots of derivatives of a single polynomial. In the second order, we observe a version of the discrete Gaussian Free Field put on top of this lattice, which provides a new explanation as to why the (continuous) Gaussian Free Field governs the global asymptotics of random matrix ensembles.


2005 ◽  
Vol 19 (30) ◽  
pp. 1793-1802 ◽  
Author(s):  
M. MODARRES

We investigate the possible angular momentum, l, dependence of the ground state energy of normal liquid 3 He . The method of lowest order constrained variational (LOCV) which includes the three-body cluster energy and normalization constraint (LOCVE) is used with angular momentum dependent two-body correlation functions. A functional minimization is performed with respect to each l-channel correlation function. It is shown that this dependence increases the binding energy of liquid 3 He by 8% with respect to calculations without angular momentum dependent correlation functions. The l=0 state has completely different behavior with respect to other l-channels. It is also found that the main contribution from potential energy comes from the l=1 state (p-waves) and the effect of l≥11 is less than about 0.1%. The effective interactions and two-body correlations in different channels are being discussed. Finally we conclude that this l-dependence can be verified experimentally by looking into the magnetization properties of liquid helium 3 and interatomic potentials.


2020 ◽  
Vol 378 (1) ◽  
pp. 625-689 ◽  
Author(s):  
Ewain Gwynne

Abstract Let $$\gamma \in (0,2)$$ γ ∈ ( 0 , 2 ) , let h be the planar Gaussian free field, and consider the $$\gamma $$ γ -Liouville quantum gravity (LQG) metric associated with h. We show that the essential supremum of the Hausdorff dimension of the boundary of a $$\gamma $$ γ -LQG metric ball with respect to the Euclidean (resp. $$\gamma $$ γ -LQG) metric is $$2 - \frac{\gamma }{d_\gamma }\left( \frac{2}{\gamma } + \frac{\gamma }{2} \right) + \frac{\gamma ^2}{2d_\gamma ^2}$$ 2 - γ d γ 2 γ + γ 2 + γ 2 2 d γ 2 (resp. $$d_\gamma -1$$ d γ - 1 ), where $$d_\gamma $$ d γ is the Hausdorff dimension of the whole plane with respect to the $$\gamma $$ γ -LQG metric. For $$\gamma = \sqrt{8/3}$$ γ = 8 / 3 , in which case $$d_{\sqrt{8/3}}=4$$ d 8 / 3 = 4 , we get that the essential supremum of Euclidean (resp. $$\sqrt{8/3}$$ 8 / 3 -LQG) dimension of a $$\sqrt{8/3}$$ 8 / 3 -LQG ball boundary is 5/4 (resp. 3). We also compute the essential suprema of the Euclidean and $$\gamma $$ γ -LQG Hausdorff dimensions of the intersection of a $$\gamma $$ γ -LQG ball boundary with the set of metric $$\alpha $$ α -thick points of the field h for each $$\alpha \in \mathbb R$$ α ∈ R . Our results show that the set of $$\gamma /d_\gamma $$ γ / d γ -thick points on the ball boundary has full Euclidean dimension and the set of $$\gamma $$ γ -thick points on the ball boundary has full $$\gamma $$ γ -LQG dimension.


Sign in / Sign up

Export Citation Format

Share Document