scholarly journals How to GAN away detector effects

2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Marco Bellagente ◽  
Anja Butter ◽  
Gregor Kasieczka ◽  
Tilman Plehn ◽  
Ramon Winterhalder

LHC analyses directly comparing data and simulated events bear the danger of using first-principle predictions only as a black-box part of event simulation. We show how simulations, for instance, of detector effects can instead be inverted using generative networks. This allows us to reconstruct parton level information from measured events. Our results illustrate how, in general, fully conditional generative networks can statistically invert Monte Carlo simulations. As a technical by-product we show how a maximum mean discrepancy loss can be staggered or cooled.

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2826
Author(s):  
Julian Garcia-Guarin ◽  
David Alvarez ◽  
Sergio Rivera

The uncertainty of solar generation and the bull market are unavoidable in energy dispatch. The purpose of this research is to validate an uncertainty cost function of residential photovoltaic energy in a real microgrid by varying the number of auctions in intraday markets. Therefore, the following procedure is proposed. First, the variability of photovoltaic generation is quantified through Monte Carlo simulations. Second, a statistical function calculates the variability costs of photovoltaic generation. Third, the uncertainty costs are estimated by varying intraday auction markets. Other complementary services are added to the network, such as battery exchange stations for electric vehicles, demand response loads, market power restrictions, and energy storage systems, which are estimated as total costs in an index ranking. The total costs are optimized in a benchmark microgrid and take complimentary services as a black box. Only the uncertainty costs of residential solar generators are discriminated. The main findings were that (1) the uncertainty costs have an error of less than 0.0168% compared to the Monte Carlo simulations and that (2) the uncertainty costs of solar generation are reduced with a decreasing trend to a more significant number of auction markets in intraday markets.


Particles ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 512-520
Author(s):  
Eszter Frajna ◽  
Robert Vertesi

In this work, we present the results of a component-level analysis with Monte Carlo simulations, which aid the interpretation of recent ALICE results of the azimutal correlation distribution of prompt D mesons with charged hadrons in pp and p–Pb collisions at sNN = 5.02 TeV. Parton-level contributions and fragmentation properties are evaluated. Charm and beauty contributions are compared in order to identify the observables that serve as sensitive probes of the production and hadronisation of heavy quarks.


2018 ◽  
Vol 274 ◽  
pp. 46-50 ◽  
Author(s):  
Rachid Bouachraoui ◽  
Abdel Ghafour El Hachimi ◽  
Younes Ziat ◽  
Lahoucine Bahmad ◽  
Najim Tahiri

2020 ◽  
Vol 22 (30) ◽  
pp. 17291-17298
Author(s):  
Ya Yang ◽  
Peiyin Guo ◽  
Yongsong Luo

Strain drives the magnetic phase transition of 1T-FeCl2 through exchange competitions.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-63-C7-64
Author(s):  
A. J. Davies ◽  
J. Dutton ◽  
C. J. Evans ◽  
A. Goodings ◽  
P.K. Stewart

Sign in / Sign up

Export Citation Format

Share Document