scholarly journals A Narrative Review of Gut-Muscle Axis and Sarcopenia: The Potential Role of Gut Microbiota

2021 ◽  
Vol Volume 14 ◽  
pp. 1263-1273
Author(s):  
Jiaxi Zhao ◽  
Yiqin Huang ◽  
Xiaofeng Yu
Author(s):  
Chenyuan Qin ◽  
Jiawei Hu ◽  
Yiming Wan ◽  
Mengyao Cai ◽  
Zhenting Wang ◽  
...  

Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractA strong and expanding evidence base supports the influence of gut microbiota in human metabolism. Altered glucose homeostasis is associated with altered gut microbiota, and is clearly associated with the development of type 2 diabetes mellitus (T2DM) and associated complications. Understanding the causal association between gut microbiota and metabolic risk has the potential role of identifying susceptible individuals to allow early targeted intervention.


2020 ◽  
Vol 7 (6) ◽  
Author(s):  
Michael Dagher ◽  
Vance G Fowler ◽  
Patty W Wright ◽  
Milner B Staub

Abstract Historically, intravenous (IV) antibiotics have been the cornerstone of treatment for uncomplicated Staphylococcus aureus bacteremia (SAB). However, IV antibiotics are expensive, increase the rates of hospital readmission, and can be associated with catheter-related complications. As a result, the potential role of oral antibiotics in the treatment of uncomplicated SAB has become a subject of interest. This narrative review article aims to summarize key arguments for and against the use of oral antibiotics to complete treatment of uncomplicated SAB and evaluates the available evidence for specific oral regimens. We conclude that evidence suggests that oral step-down therapy can be an alternative for select patients who meet the criteria for uncomplicated SAB and will comply with medical treatment and outpatient follow-up. Of the currently studied regimens discussed in this article, linezolid has the most support, followed by fluoroquinolone plus rifampin.


Pancreatology ◽  
2017 ◽  
Vol 17 (6) ◽  
pp. 867-874 ◽  
Author(s):  
Robert Memba ◽  
Sinead N. Duggan ◽  
Hazel M. Ni Chonchubhair ◽  
Oonagh M. Griffin ◽  
Yasir Bashir ◽  
...  

2018 ◽  
Vol 52 ◽  
pp. S68-S70 ◽  
Author(s):  
Letizia Mazzini ◽  
Luca Mogna ◽  
Fabiola De Marchi ◽  
Angela Amoruso ◽  
Marco Pane ◽  
...  

2019 ◽  
Vol 12 ◽  
pp. 175628481882225 ◽  
Author(s):  
Jonathan P. Segal ◽  
Benjamin H. Mullish ◽  
Mohammed Nabil Quraishi ◽  
Animesh Acharjee ◽  
Horace R. T. Williams ◽  
...  

The aetiopathogenesis of inflammatory bowel diseases (IBD) involves the complex interaction between a patient’s genetic predisposition, environment, gut microbiota and immune system. Currently, however, it is not known if the distinctive perturbations of the gut microbiota that appear to accompany both Crohn’s disease and ulcerative colitis are the cause of, or the result of, the intestinal inflammation that characterizes IBD. With the utilization of novel systems biology technologies, we can now begin to understand not only details about compositional changes in the gut microbiota in IBD, but increasingly also the alterations in microbiota function that accompany these. Technologies such as metagenomics, metataxomics, metatranscriptomics, metaproteomics and metabonomics are therefore allowing us a deeper understanding of the role of the microbiota in IBD. Furthermore, the integration of these systems biology technologies through advancing computational and statistical techniques are beginning to understand the microbiome interactions that both contribute to health and diseased states in IBD. This review aims to explore how such systems biology technologies are advancing our understanding of the gut microbiota, and their potential role in delineating the aetiology, development and clinical care of IBD.


2020 ◽  
Vol 8 (3) ◽  
pp. 206-214
Author(s):  
Xiaoli Zhang ◽  
Zui Pan

Abstract Gastric and esophageal cancers are multifactorial and multistage-involved malignancy. While the impact of gut microbiota on overall human health and diseases has been well documented, the influence of gastric and esophageal microbiota on gastric and esophageal cancers remains unclear. This review will discuss the reported alteration in the composition of gastric and esophageal microbiota in normal and disease conditions, and the potential role of dysbiosis in carcinogenesis and tumorigenesis. This review will also discuss how dysbiosis stimulates local and systemic immunity, which may impact on the immunotherapy for cancer.


2019 ◽  
Vol 11 (3) ◽  
pp. 709-723 ◽  
Author(s):  
Kan Gao ◽  
Chun-long Mu ◽  
Aitak Farzi ◽  
Wei-yun Zhu

ABSTRACT The gut-brain axis (GBA) is a bilateral communication network between the gastrointestinal (GI) tract and the central nervous system. The essential amino acid tryptophan contributes to the normal growth and health of both animals and humans and, importantly, exerts modulatory functions at multiple levels of the GBA. Tryptophan is the sole precursor of serotonin, which is a key monoamine neurotransmitter participating in the modulation of central neurotransmission and enteric physiological function. In addition, tryptophan can be metabolized into kynurenine, tryptamine, and indole, thereby modulating neuroendocrine and intestinal immune responses. The gut microbial influence on tryptophan metabolism emerges as an important driving force in modulating tryptophan metabolism. Here, we focus on the potential role of tryptophan metabolism in the modulation of brain function by the gut microbiota. We start by outlining existing knowledge on tryptophan metabolism, including serotonin synthesis and degradation pathways of the host, and summarize recent advances in demonstrating the influence of the gut microbiota on tryptophan metabolism. The latest evidence revealing those mechanisms by which the gut microbiota modulates tryptophan metabolism, with subsequent effects on brain function, is reviewed. Finally, the potential modulation of intestinal tryptophan metabolism as a therapeutic option for brain and GI functional disorders is also discussed.


Sign in / Sign up

Export Citation Format

Share Document