scholarly journals Land use influences microbial biomass carbon, organic carbon and nitrogen stock in a tropical acric luvisols of Southwestern Nigeria

2016 ◽  
Vol 3 (6) ◽  
pp. 413-423
Author(s):  
Segun Oluwatomiwa Oladele ◽  
Adebayo Jonathan Adeyemo

A study was conducted to determine the effect of different land use on microbial biomass carbon, organic carbon and nitrogen stock on a tropical acric luvisols at Ibadan, Oyo State, Southwestern Nigeria. Soil samples were collected in 2014 using a quadrant approach across ten plots at the surface (0-15 cm) and sub-surface (16-30 cm) depths in four different land use systems of (i) 8-year old citrus, (ii) 8 year old cacao, (iii) 8 year oil palm and (iv) a fallow land of over 25 years. Significant differences in soil physical and chemical properties, microbial biomass carbon, carbon and nitrogen stock in different land use types at two depths (0-15 and 15-30 cm) were observed on soil properties important for sustainable crop production. Fallow land use, oil palm plantation and cocoa plantation were characterized by higher carbon and nitrogen stock, microbial biomass carbon, total nitrogen, organic carbon, available phosphorus, marginally low exchangeable bases except for Ca and Mg with relatively higher values and marginal C/N ratio. These land use also had lower bulk density, high total porosity, high moisture content and optimum soil temperature level. These results suggest that incorporation of optimum fallow cycle with appropriate land use in combination with soil enriching cover and tree crops in the study area will increase carbon and nitrogen stock while imitating a forest ecosystem condition which would help restore soil fertility in degraded lands while reducing greenhouse gas fluxes.

2020 ◽  
Author(s):  
Deborah Linsler ◽  
Jacqueline Gerigk ◽  
Ilka Schmoock ◽  
Rainer Georg Jörgensen ◽  
Martin Potthoff

<p>Reduced tillage is assumed to be a suitable practice to maintain and promote microbial biomass and microbial activity in the soil. The microbial biomass in particular is considered as a sensitive indicator for detecting soil disturbances. The objective of this study was to quantify the influence of different tillage practices on microbial parameters in the soil. Furthermore, we analyzed the relation of those microbial parameters with site-specific conditions.</p><p>To get a deeper insight in that topic, soils from different fields of agricultural farms with different tillage practices in France (12 fields), Romania (15 fields) and Sweden (17 fields) were examined within the “SoilMan project”. The tillage practices were no-tillage (absence of any tillage), minimum tillage (non-inversion tillage for instance by chisel plough or cultivator) and conventional tillage (inversion tillage by ploughing), all of which were carried out for at least five years prior to sampling. Soil samples were taken in spring 2018 from all fields under winter wheat (Triticum aestivum) at three soil depths (0-10 cm, 10-20 cm, 20-30 cm). As microbial parameters we measured microbial biomass carbon and nitrogen contents, ergosterol contents (as proxy for fungi) and basal respiration rates. For site-specific conditions we measured soil organic carbon, total nitrogen and total phosphorus contents, texture, pH and the soil water content.</p><p>Results show that microbial biomass carbon and nitrogen were more affected by soil type and soil texture as well as climatic conditions (mean precipitation and temperature) than by tillage practices. For instance, an increased clay content had a positive effect on the microbial biomass and, in addition to the higher average annual temperature, explained the generally low values ​​in France. The lack of inversion tillage primarily led to stratified levels of soil organic carbon, microbial biomass carbon and ergosterol contents, which can be explained by the lack of crop residue incorporation. There were hardly any differences in microbial indicators between the tillage intensities when looking at the whole of the sampled soil profile (0-30 cm). In France, the microbial biomass carbon / soil organic carbon ratio was lower for no-tillage than for conventional tillage, which may indicate, among other things, that the mechanically ground organic matter incorporated into the soil under conventional tillage was better colonized by microorganisms. However, this effect could not be confirmed in the other countries. The metabolic quotient was generally increased at the lowest sampled depth (20-30 cm), irrespective of the cultivation.</p><p>We can conclude that the soil tillage intensity influenced the distribution of microbial biomass carbon and soil organic carbon contents more strongly than the total amounts in the sampled soil profile and that the soil texture had a greater impact on microbial soil properties than the agricultural management practice.</p>


2019 ◽  
Vol 11 (1) ◽  
pp. 121-125 ◽  
Author(s):  
Chowlani Manpoong ◽  
S.K. Tripathi

Changes in land use and improper soil management have led to severe land degradation around the globe through the modification in soil physicochemical and biological processes. This study aimed to assess the soil properties of different land use system types. Soil samples (0-15 cm depth) were collected from five land uses; Rubber Plantation (RP), Oil Palm Plantation (OPP), Bamboo Forest (BF), Fallow Land (FL) and Natural Forest (NF) and analyzed for bulk density, soil texture, soil pH, soil moisture, soil carbon, total nitrogen, ammonium, nitrate, soil microbial biomass carbon, soil respiration. Soil pH was lower than 4.9 in all the sites indicating that the surface soil was highly acidic. Soil organic carbon (SOC) and total nitrogen (TN) values ranged from 2.02% to 2.81% and 0.22% to 0.3% respectively. Soil organic carbon (SOC), total nitrogen (TN) and soil microbial biomass (SMBC) were highly affected by soil moisture. NH4+-N and NO3--N ranged from 5.6 mg kg-1 to 10.2 mg kg-1 and 1.15 mg kg-1 to 2.81 mg kg-1 respectively. NF soils showed the maximum soil microbial biomass carbon (SMBC) whereas the minimum was observed in BF with values ranging from 340 mg kg-1 to 345 mg kg-1. Basal respiration was highest in RP (375 mg CO2 m-2 hr-1) and lowest in BF (224 mg CO2 m-2 hr-1). The findings demonstrated significant effect (p<0.05) of land use change on soil nutrient status and organic matter. Findings also indicated that land use change deteriorated native soil physicochemical and biological properties, but that land restoration practices through longer fallow period (>10 years) likely are successful in promoting the recovery of some soil characteristics.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 508 ◽  
Author(s):  
Zhiwei Ge ◽  
Shuiyuan Fang ◽  
Han Chen ◽  
Rongwei Zhu ◽  
Sili Peng ◽  
...  

Soil resident water-stable macroaggregates (diameter (Ø) > 0.25 mm) play a critical role in organic carbon conservation and fertility. However, limited studies have investigated the direct effects of stand development on soil aggregation and its associated mechanisms. Here, we examined the dynamics of soil organic carbon, water-stable macroaggregates, litterfall production, fine-root (Ø < 1 mm) biomass, and soil microbial biomass carbon with stand development in poplar plantations (Populus deltoides L. ‘35’) in Eastern Coastal China, using an age sequence (i.e., five, nine, and 16 years since plantation establishment). We found that the quantity of water-stable macroaggregates and organic carbon content in topsoil (0–10 cm depth) increased significantly with stand age. With increasing stand age, annual aboveground litterfall production did not differ, while fine-root biomass sampled in June, August, and October increased. Further, microbial biomass carbon in the soil increased in June but decreased when sampled in October. Ridge regression analysis revealed that the weighted percentage of small (0.25 mm ≤ Ø < 2 mm) increased with soil microbial biomass carbon, while that of large aggregates (Ø ≥ 2 mm) increased with fine-root biomass as well as microbial biomass carbon. Our results reveal that soil microbial biomass carbon plays a critical role in the formation of both small and large aggregates, while fine roots enhance the formation of large aggregates.


2015 ◽  
Vol 12 (22) ◽  
pp. 6751-6760 ◽  
Author(s):  
Z. H. Zhou ◽  
C. K. Wang

Abstract. Microbial metabolism plays a key role in regulating the biogeochemical cycle of forest ecosystems, but the mechanisms driving microbial growth are not well understood. Here, we synthesized 689 measurements on soil microbial biomass carbon (Cmic) and nitrogen (Nmic) and related parameters from 207 independent studies published up to November 2014 across China's forest ecosystems. Our objectives were to (1) examine patterns in Cmic, Nmic, and microbial quotient (i.e., Cmic / Csoil and Nmic / Nsoil rates) by climate zones and management regimes for these forests; and (2) identify the factors driving the variability in the Cmic, Nmic, and microbial quotient. There was a large variability in Cmic (390.2 mg kg−1), Nmic (60.1 mg kg−1, Cmic : Nmic ratio (8.25), Cmic / Csoil rate (1.92 %), and Nmic / Nsoil rate (3.43 %) across China's forests. The natural forests had significantly greater Cmic (514.1 mg kg−1 vs. 281.8 mg kg−1) and Nmic (82.6 mg kg−1 vs. 39.0 mg kg−1) than the planted forests, but had less Cmic : Nmic ratio (7.3 vs. 9.2) and Cmic / Csoil rate (1.7 % vs. 2.1 %). Soil resources and climate together explained 24.4–40.7 % of these variations. The Cmic : Nmic ratio declined slightly with Csoil : Nsoil ratio, and changed with latitude, mean annual temperature and precipitation, suggesting a plasticity of microbial carbon-nitrogen stoichiometry. The Cmic / Csoil rate decreased with Csoil : Nsoil ratio, whereas the Nmic / Nsoil rate increased with Csoil : Nsoil ratio; the former was influenced more by soil resources than by climate, whereas the latter was influenced more by climate. These results suggest that soil microbial assimilation of carbon and nitrogen are jointly driven by soil resources and climate, but may be regulated by different mechanisms.


2009 ◽  
Vol 6 (4) ◽  
pp. 6749-6780 ◽  
Author(s):  
R. Guicharnaud ◽  
O. Arnalds ◽  
G. I. Paton

Abstract. Temperature change is acknowledged to have a significance effect on soil biological processes and the corresponding sequestration of carbon and the cycling of key nutrients. Soils at high latitudes are likely to be particularly impacted by increases in temperature. In this study, the response of a range of soil microbial parameters (respiration, nutrient availability, microbial biomass carbon, arylphosphatase and dehydrogenase activity) to temperature changes was measured in sub-arctic soils collected from across Iceland. Sample sites reflected two soil temperature regimes (cryic and frigid) and two land uses (pasture and arable). The soils were sampled from the field frozen, equilibrated at −20°C and then incubated for two weeks at −10°C, −2°C, +2°C and +10°C. Respiration and enzymatic activity were temperature dependent. Microbial biomass carbon and nitrogen mineralisation did not change with temperature. The main factor controlling soil respiration at −10°C was the concentration of dissolved organic carbon. At −10°C, dissolved organic carbon accounted for 88% of the fraction of labile carbon which was significantly greater than that recorded at +10°C when dissolved organic carbon accounted for as low as 42% of the labile carbon fraction. Heterotrophic microbial activity is governed by both substrate availability and the temperature and this has been described by the Q10 factor. Elevated temperatures in the short term may have little effect on the size of the microbial biomass but will have significant impacts on the release of carbon through respiration. These results demonstrate that gradual changes in temperature across large areas at higher latitudes will have considerable impacts in relation to global soil carbon dynamics.


2015 ◽  
Vol 12 (14) ◽  
pp. 11191-11216 ◽  
Author(s):  
Z. H. Zhou ◽  
C. K. Wang

Abstract. Microbial metabolism plays a key role in regulating the biogeochemical cycle of forest ecosystems, but the mechanisms driving microbial growth are not well understood. Here, we synthesized 689 measurements on soil microbial biomass carbon (Cmic) and nitrogen (Nmic) and related parameters from 207 independent studies published during the past 15 years across China's forest ecosystems. Our objectives were to (1) examine patterns in Cmic, Nmic, and microbial quotient (i.e., Cmic / Csoil and Nmic / Nsoil rates) by climate zones and management regimes for these forests; and (2) identify the factors driving the variability in the Cmic, Nmic, and microbial quotient. There was a large variability in Cmic (390.2 mg kg−1), Nmic (60.1 mg kg−1), Cmic : Nmic ratio (8.25), Cmic / Csoil rate (1.92 %), and Nmic / Nsoil rate (3.43 %) across China's forests, with coefficients of variation varying from 61.2 to 95.6 %. The natural forests had significantly greater Cmic and Nmic than the planted forests, but had less Cmic : Nmic ratio and Cmic / Csoil rate. Soil resources and climate together explained 24.4–40.7 % of these variations. The Cmic : Nmic ratio declined slightly with the Csoil : Nsoil ratio, and changed with latitude, mean annual temperature and precipitation, suggesting a plastic homeostasis of microbial carbon-nitrogen stoichiometry. The Cmic / Csoil and Nmic / Nsoil rates were responsive to soil resources and climate differently, suggesting that soil microbial assimilation of carbon and nitrogen be regulated by different mechanisms. We conclude that soil resources and climate jointly drive microbial growth and metabolism, and also emphasize the necessity of appropriate procedures for data compilation and standardization in cross-study syntheses.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8531 ◽  
Author(s):  
Yulu Zhang ◽  
Dong Cui ◽  
Haijun Yang ◽  
Nijat Kasim

Background A wetland is a special ecosystem formed by the interaction of land and water. The moisture content variation will greatly affect the function and structure of the wetland internal system. Method In this paper, three kinds of wetlands with different flooding levels (Phragmites australis wetland (long-term flooding), Calamagrostis epigeios wetland(seasonal flooding) and Ditch millet wetland (rarely flooded)) in Ili Valley of Xinjiang China were selected as research areas. The changes of microbial biomass carbon, soil physical and chemical properties in wetlands were compared, and redundancy analysis was used to analyze the correlation between soil physical and chemical properties, microbial biomass carbon and enzyme activities (soil sucrase, catalase, amylase and urease). The differences of soil enzyme activities and its influencing factors under different flooding conditions in Ili Valley were studied and discussed. Result The results of this study were the following: (1) The activities of sucrase and amylase in rarely flooded wetlands and seasonally flooded wetlands were significantly higher than those in long-term flooded wetlands; the difference of catalase activity in seasonal flooded wetland was significant and the highest. (2) Redundancy analysis showed that soil organic carbon, dissolved organic carbon, total phosphorus and soil microbial biomass carbon had significant effects on soil enzyme activity (p < 0.05). (3) The correlation between soil organic carbon and the sucrase activity, total phosphorus and the catalase activity was the strongest; while soil organic carbon has a significant positive correlation with invertase, urease and amylase activity, with a slight influence on catalase activity. The results of this study showed that the content of organic carbon, total phosphorus and other soil fertility factors in the soil would be increased and the enzyme activity would be enhanced if the flooding degree was changed properly.


Sign in / Sign up

Export Citation Format

Share Document