scholarly journals Long-term trend analysis of climatic variables and reference evapotranspiration over different urban areas in Tunisia

2019 ◽  
Vol 6 (12) ◽  
pp. 189-201
Author(s):  
Basma Latrech ◽  
Hiba Ghazouani ◽  
Lasram Asma ◽  
Boutheina M. Douh ◽  
Mansour Mohsen ◽  
...  

In this study, the trend analysis of annual climatic variables including Tmax, Tmin, Tmean, RHmean, WS and SR as well as FAO-56 PM ET0 were investigated in three locations in Tunisia during 1984-2007. The Mann-Kendall Test, the Sen's Slope Estimator and linear regression tests were used for the analysis. The obtained results showed a significant increasing trends (a < 0.001) and (a < 0.01) in annual Tmax, Tmin and Tmean at all the considered locations. However, Tmin increase faster than Tmax with a slope of magnitudes ranging between 0.057 to 0.1 oC year-1. For RHmean, a non-significant tendency of decrease was observed in Chott-Mariem station. However, significantly increasing trends were found for Kelibia and Tunis Carthage. Concerning the WS variable, a tendency of decrease is observed during the study period for all the stations. Nevertheless, the statistical analysis of decreasing tendency of wind speed varied from non-significant for Tunis Carthage to highly significant (a <= 0.001) at Chott-Mariem and Kelibia. Despite the highly significant upward trend of temperature, the temporal pattern of mean annual FAO56 PM-ET0, over the different stations, did not exhibit any significant trend except for Kelibia station.

2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Bharat Maharjan ◽  
Karin Pachel ◽  
Enn Loigu

Temporal trends provide a good interpretation of change in stormwater quality over time. This study aimed to analyse trends and influences due to stormflow and baseflow. Grab samples of 18-19 years from 1995 to 2014 recorded at outlets of 7 Tallinn watersheds were analysed for monotonic trend through seasonal Mann Kendall test for long-term, short-term, baseflow and stormflow. Statistically significant downward trends (P-value (p) &lt; 0.05) were found for 6 – hydrocarbon (HC), 1 – suspended solids (SS), 3 – biological oxygen demand (BOD), 4 – total nitrogen (TN) and 2 – total phosphorus (TP) out of 7 sampling outlets over the last 10 years. Less significant decreasing trends (p > 0.05 and &lt; 0.2) for 3 – SS, 1 – BOD, 1 – TN and 1 – TP were identified. Statistically significant long-term upward trends of pH were re-vealed in 5 basins, which reduced to 2 with 5 less significant upward trends over the 10 year period, indicating improve-ments in pH reduction. Härjapea has the highest pH without trend but it includes an upward trend of TN at p = 0.051. The highly possible causes for downward trends are street sweeping, sewer network improvement, decline in sub-urban agri-cultural areas, etc. The upward trend results of pH are related to increased alkalinisation due to acidic rain, weathering of carbonate rocks, sewage discharge and alkaline road dust. In most of the basins, stormflow has more influence on trends than baseflow.


2020 ◽  
Vol 1000 (1000) ◽  
Author(s):  
Wakhidatik Nurfaida ◽  
Hendra Ramdhani ◽  
Takenori Shimozono ◽  
Indri Triawati ◽  
Muhammad Sulaiman

Rainfall intensity seems to be increasing nowadays due to climate change as presented in many studies of both global and regional scale. Consequently, cities worldwide are now more vulnerable to flooding. In Indonesia, increasing frequency of floods was reported for the past decades by The National Agency for Disaster Countermeasure (BNPB). To understand the rainfall changes, long-term trend evaluation over a specific area is then crucial due to the large variability of spatial and temporal rainfall distribution. This study investigates the homogeneity and trend of rainfall data from 20 stations over the Opak River basin, Yogyakarta, Indonesia. A long-term ground observation rainfall data whose period varies from 1979 to 2019 were analyzed. Non-parametric Mann – Kendall test was applied to assess the trend, while the magnitude was calculated using the Sen’s slope estimator. An increasing annual maximum of daily rainfall intensity was observed at four stations on a 0.95 confidence level based on the Mann – Kendall test, while the Sen’s slope estimator shows a positive trend at almost all stations. The trend of heavy rainfall frequency was also found to be significantly increased, with only one station showed a decreasing trend. Furthermore, this paper also described the spatial and temporal rainfall variability. Positive trend was mostly found during the rainy season, while the negative trend occurred during the dry season. This could pose a challenge for water resource management engineering and design, such as water supply systems or reservoir management. Understanding this phenomena will benefit hydrologists in preparing future water resource engineering and management.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 332 ◽  
Author(s):  
Yilinuer Alifujiang ◽  
Jilili Abuduwaili ◽  
Balati Maihemuti ◽  
Bilal Emin ◽  
Michael Groll

The analysis of various characteristics and trends of precipitation is an essential task to improve the utilization of water resources. Lake Issyk-Kul basin is an upper alpine catchment, which is more susceptible to the effects of climate variability, and identifying rainfall variations has vital importance for water resource planning and management in the lake basin. The well-known approaches linear regression, Şen’s slope, Spearman’s rho, and Mann-Kendall trend tests are applied frequently to try to identify trend variations, especially in rainfall, in most literature around the world. Recently, a newly developed method of Şen-innovative trend analysis (ITA) provides some advantages of visual-graphical illustrations and the identification of trends, which is one of the main focuses in this article. This study obtained the monthly precipitation data (between 1951 and 2012) from three meteorological stations (Balykchy, Cholpon-Ata, and Kyzyl-Suu) surrounding the Lake Issyk-Kul, and investigated the trends of precipitation variability by applying the ITA method. For comparison purposes, the traditional Mann–Kendall trend test also used the same time series. The main results of this study include the following. (1) According to the Mann-Kendall trend test, the precipitation of all months at the Balykchy station showed a positive trend (except in January (Zc = −0.784) and July (Zc = 0.079)). At the Cholpon-Ata and Kyzyl-Suu stations, monthly precipitation (with the same month of multiple years averaged) indicated a decreasing trend in January, June, August, and November. At the monthly scale, significant increasing trends (Zc > Z0.10 = 1.645) were detected in February and October for three stations. (2) The ITA method indicated that the rising trends were seen in 16 out of 36 months at the three stations, while six months showed decreasing patterns for “high” monthly precipitation. According to the “low” monthly precipitations, 14 months had an increasing trend, and four months showed a decreasing trend. Through the application of the ITA method (January, March, and August at Balykchy; December at Cholpon-Ata; and July and December at Kyzyl-Suu), there were some significant increasing trends, but the Mann-Kendall test found no significant trends. The significant trend occupies 19.4% in the Mann-Kendall test and 36.1% in the ITA method, which indicates that the ITA method displays more positive significant trends than Mann–Kendall Zc. (3) Compared with the classical Mann-Kendall trend results, the ITA method has some advantages. This approach allows more detailed interpretations about trend detection, which has benefits for identifying hidden variation trends of precipitation and the graphical illustration of the trend variability of extreme events, such as “high” and “low” values of monthly precipitation. In contrast, these cannot be discovered by applying traditional methods.


2005 ◽  
Vol 19 (18) ◽  
pp. 3517-3532 ◽  
Author(s):  
Z. X. Xu ◽  
K. Takeuchi ◽  
H. Ishidaira ◽  
J. Y. Li

Sign in / Sign up

Export Citation Format

Share Document