scholarly journals Artificial light sources for efficient plant growth

1988 ◽  
Vol 72 (Appendix) ◽  
pp. 139-140
Author(s):  
K. Horaguchi ◽  
M. Morita ◽  
I. Aiga ◽  
M. Kiyota
Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1477
Author(s):  
Woo-Suk Jung ◽  
Ill-Min Chung ◽  
Myeong Ha Hwang ◽  
Seung-Hyun Kim ◽  
Chang Yeon Yu ◽  
...  

Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation systems to obtain higher yields with increased phytochemical concentrations using convenient light sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth. Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense system and providing protection from oxidative damage. Since different plant species respond differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands before large-scale LED application for controlled in vitro plant growth. This review focuses on the most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids, anthocyanins, and antioxidant enzymes, have also been discussed.


Author(s):  
Ayman Y. Al-Rawashdeh ◽  
Omar Albarbarawi ◽  
Ghazi Qaryouti

<p>In this case study, two polycrystalline solar modules were installed outdoors (irradiated by sunlight) and indoors (irradiated by artificial lights). The solar cells in both cases were installed using different color filters that allowed the passage of certain light frequencies. The amount of energy produced by each module were measured and compared to a reference module with no filter. The results indicated the variable response of polycrystalline solar cells to natural and artificial light sources, being more responsive in both cases to red band color as could be deduced from their % current outputs (72.5% sunlight radiation; 84.38% artificial light sources). Other colors, including yellow, green, orange and violet afforded acceptable outputs. The results indicated that electrical outputs of indoor solar cells decreased when colored filters were used, but red filter in general afforded the maximum outputs, for both the artificially radiated indoor and naturally radiated outdoor solar cells. The case study suggests the possible complementary advantage of using indoor mounted solar cells for the production of electricity during artificial illumination period of the day.</p>


2013 ◽  
Vol 25 (3) ◽  
pp. 142-145
Author(s):  
Hiroshi HAMAMOTO ◽  
Keisuke YAMAZAKI

Sign in / Sign up

Export Citation Format

Share Document