scholarly journals Sub-Monthly Circulation Features Associated with Tropical Cyclone Tracks over the East Asian Monsoon Area during July-August Season

2006 ◽  
Vol 84 (5) ◽  
pp. 871-889 ◽  
Author(s):  
Ken-Chung KO ◽  
Huang-Hsiung HSU
The Holocene ◽  
2021 ◽  
pp. 095968362199466
Author(s):  
Nannan Li ◽  
Arash Sharifi ◽  
Frank M Chambers ◽  
Yong Ge ◽  
Nathalie Dubois ◽  
...  

High-resolution proxy-based paleoenvironmental records derived from peatlands provide important insights into climate changes over centennial to millennial timescales. In this study, we present a composite climatic index (CCI) for the Hani peatland from northeastern China, based on an innovative combination of pollen-spore, phytolith, and grain size data. We use the CCI to reconstruct variations of the East Asian summer monsoon (EASM) intensity during the Holocene. This is accomplished with complete ensemble empirical mode decomposition (CEEMD), REDFIT, and cross-wavelet coherency analysis to reveal the periodicities (frequencies) of the multi-proxy derived CCI sequences and to assess potential external forcing of the EASM. The results showed that periodicities of ca. 300–350, 475, 600, 1075, and 1875 years were present in the Hani CCI sequence. Those periodicities are consistent with previously published periodicities in East Asia, indicating they are a product of external climate controls over an extensive region, rather than random variations caused by peatland-specific factors. Cross-wavelet coherency analysis between the decomposed CCI components and past solar activity reconstructions suggests that variations of solar irradiation are most likely responsible for the cyclic characteristics at 500-year frequency. We propose a conceptual model to interpret how the sun regulates the monsoon climate via coupling with oceanic and atmospheric circulations. It seems that slight solar irradiation changes can be amplified by coupling with ENSO events, which result in a significant impact on the regional climate in the East Asian monsoon area.


2008 ◽  
Vol 113 (D21) ◽  
Author(s):  
Xing Yuan ◽  
Zhenghui Xie ◽  
Jing Zheng ◽  
Xiangjun Tian ◽  
Zongliang Yang

Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 865-875 ◽  
Author(s):  
Weijian Zhou ◽  
Shaohua Song ◽  
G Burr ◽  
A J T Jull ◽  
Xuefeng Lu ◽  
...  

We have carried out a multiproxy analysis of high-resolution eutrophic peat/mud, sand dune, and loess/paleosol sequences covering the Holocene period in both southern and northern China, in order to test the hypothesis of a time-transgressive Holocene optimum in the East Asian monsoon area (An et al. 2000). Samples were radiocarbon dated to establish the chronology. Our results indicate that the Holocene optimum occurred between ∼10,000–5000 cal yr ago in both southern and northern China, consistent with a global pattern rather than simply a local expression. Our data also support the conclusion that the evolution of Holocene climate in China is consistent with changes in Northern Hemisphere solar radiation.


2015 ◽  
Vol 11 (2) ◽  
pp. 339-353 ◽  
Author(s):  
N. Kurita ◽  
Y. Fujiyoshi ◽  
T. Nakayama ◽  
Y. Matsumi ◽  
H. Kitagawa

Abstract. To elucidate the mechanism for how the East Asian Monsoon (EAM) variability have influenced the isotope proxy records in Japan, we explore the primary driver of variations of precipitation isotopes at multiple temporal scales (event, seasonal and inter-annual scales). Using a new 1-year record of the isotopic composition of event-based precipitation and continuous near-surface water vapor at Nagoya in central Japan, we identify the key atmospheric processes controlling the storm-to-storm isotopic variations through an analysis of air mass sources and rainout history during the transport of moisture to the site, and then apply the identified processes to explain the inter-annual isotopic variability related to the EAM variability in the historical 17-year long Tokyo station record in the Global Network of Isotopes in Precipitation (GNIP). In the summer, southerly flows transport moisture with higher isotopic values from subtropical marine regions and bring warm rainfall enriched with heavy isotopes. The weak monsoon summer corresponds to enriched isotopic values in precipitation, reflecting higher contribution of warm rainfall to the total summer precipitation. In the strong monsoon summer, the sustaining Baiu rainband along the southern coast of Japan prevents moisture transport across Japan, so that the contribution of warm rainfall is reduced. In the winter, storm tracks are the dominant driver of storm-to-storm isotopic variation and relatively low isotopic values occur when a cold frontal rainband associated with extratropical cyclones passes off to the south of the Japan coast. The weak monsoon winter is characterized by lower isotopes in precipitation, due to the distribution of the cyclone tracks away from the southern coast of Japan. In contrast, the northward shift of the cyclone tracks and stronger development of cyclones during the strong monsoon winters decrease the contribution of cold frontal precipitation, resulting in higher isotopic values in winter precipitation. Therefore, year-to-year isotopic variability in summer and winter Japanese precipitation correlates significantly with changes in the East Asian summer and winter monsoon intensity (R=-0.47 for summer, R=0.42 for winter), and thus we conclude that the isotope proxy records in Japan should reflect past changes in the East Asian Monsoon. Since our study identifies the climate drivers controlling isotopic variations in summer and winter precipitation, we highlight the retrieval of a record with seasonal resolution from paleoarchives as an important priority.


Sign in / Sign up

Export Citation Format

Share Document