somali jet
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Wenjing Shi ◽  
Qingzhe Wang ◽  
Ziniu Xiao ◽  
Wei Cheng ◽  
Wei Duan

As two important components of the Asian summer monsoon system, the intensities of South Asian High (SAH) and Somali jet (SMJ) in summer exhibit both interannual and decadal variabilities. On the interdecadal timescale, the temporal evolution of the SAH intensity is in phase with that of the SMJ intensity. By comparison, we find that both of them evolve synchronously with the Atlantic Multidecadal Oscillation (AMO), with AMO cold/warm phases corresponding to the weakening/strengthening of SAH and SMJ. Further diagnoses indicate that the interdecadal variabilities of the SAH and SMJ intensities in summer may be modulated by the AMO phase. Mechanistically, this modulation appears to be achieved via an interdecadal Silk Road pattern (SRP)-like wave train along the Asian westerly jet and Matsuno–Gill tropical atmospheric response. The cold SST anomaly over extratropical North Atlantic related to the AMO firstly induces an anomalous high over Western Europe and produces a well-organized wave train between 30°N and 60°N. The anomalous Iranian Plateau low along with the wave train path leads to a weakened SAH. Besides, the AMO-related cold SST anomalies over tropical North Atlantic cool the tropical tropospheric atmosphere through the moist adjustment process and produce a Matsuno–Gill-like atmospheric response covering the tropical Indian Ocean. Due to the Matsuno–Gill response, subsidence motion anomalies over the central tropical Indian Ocean corresponding to a result in increased lower-level divergence and upper-level convergence are excited over the tropical Indian Ocean. Finally, the tropical Indian Ocean divergence in the lower troposphere leads to the weakened summer SMJ, and the tropical Indian Ocean convergence in the upper troposphere results in the decrease and northward displacement of SAH in summer.


Author(s):  
Kelly M. Núñez Ocasio ◽  
Alan Brammer ◽  
Jenni L. Evans ◽  
George S. Young ◽  
Zachary L. Moon

AbstractEastern Africa is a common region of African easterly wave (AEW) onset and AEW early-life. How the large-scale environment over east Africa relates to the likelihood of an AEW subsequently undergoing tropical cyclogenesis in a climatology has not been documented. This study addresses the following hypothesis: AEWs that undergo tropical cyclogenesis (i.e., developing AEWs) initiate and propagate under a more favorable monsoon large-scale environment over eastern Africa when compared to non-developing AEWs. Using a 21-year August-to-September (1990-2010) climatology of AEWs, differences in the large-scale environment between developers and non-developers are identified and are propose to be used as key predictors of subsequent tropical cyclone formation and could informtropical cyclogenesis prediction. TC precursors when compared to non-developing AEWs experience: an anomalously active West African Monsoon, stronger northerly flow, more intense zonal Somali jet, anomalous convergence over the Marrah Mountains (region of AEW forcing), and a more intense and elongated African easterly jet (AEJ). These large-scale conditions are linked to near-trough attributes of developing AEWs which favor more moisture ingestion, vertically aligned circulation, a stronger initial 850-hPa vortex, deeper wave pouch, and arguably more AEW and Mesoscale convective systems interactions. AEWs that initiate over eastern Africa and cross the west coast of Africa are more likely to undergo tropical cyclogenesis than those initiating over central or west Africa. Developing AEWs are more likely to be southern-track AEWs than non-developing AEWs.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tat Fan Cheng ◽  
Mengqian Lu ◽  
Lun Dai

AbstractRain belts in East Asia frequently pose threats to human societies and natural systems. Advances in a skillful forecast on heavy precipitation require a deeper understanding of the preconditioned environments and the hydrologic cycle. Here, we disentangle 15 dominant moisture channels along four corridors reaching the Somali Jet, South Asia, Bay of Bengal, and Pacific basin for the warm-season rain belts. Among them, the Somali and South Asian channels were underappreciated in the literature. The results also highlight the importance of terrestrial moisture sources, and the close relationship between the moisture pathways and rain belts’ characteristics. Back-tracing the weather within a 2-week lead time reveals the pre-existing weather systems and circumglobal wave trains, that govern the moisture channels. Findings from this work develop a better understanding of East Asian rain belts’ water cycle, and may offer insights into model evaluation and heavy rainfall prediction at a longer lead time.


2021 ◽  
Author(s):  
Ashwin K Seshadri ◽  
Vishal Dixit

<div>In response to the north-south pressure gradients set by the annual march of the Sun, a cross-equatorial flow that turns to become a low-level zonal jet at around 10 ° N (also known as Somali jet) is set in the lower troposphere (around 850 hPa) over the Indian ocean. These flows play a fundamental role in the Indian monsoon. A detailed understanding of small and large scale drivers of this flow is lacking. Here we present the analysis of Kinetic Energy (KE) budget of the low level flow using high spatio-temporal resolution ERA5 reanalysis to identify sources and sinks of KE generation. We find that a significant KE generation occurs over East African highlands, Western Ghats and the Arabian sea. Over the oceans, the KE generation occurs mainly due to cross-isobaric meridional winds in the boundary layer. In contrast, over East African highlands and Western ghats KE generation maximizes just above the boundary layer and mainly occurs due to interaction of flow with the orography. We propose a simple model to decompose lower tropospheric KE generation into contributions from surface pressure, orography and free-tropospheric gradients.</div>


2020 ◽  
Author(s):  
Shipra Jain ◽  
Saroj K. Mishra ◽  
Abhishek Anand ◽  
Popat Salunke ◽  
John T. Fasullo

2020 ◽  
Vol 99 (sp1) ◽  
pp. 31
Author(s):  
Wenjing Shi ◽  
Wei Dai ◽  
Wei Cheng ◽  
Ziniu Xiao ◽  
Siyuan Li ◽  
...  

2018 ◽  
Vol 18 (6) ◽  
pp. 4251-4276 ◽  
Author(s):  
Han Han ◽  
Jane Liu ◽  
Huiling Yuan ◽  
Bingliang Zhuang ◽  
Ye Zhu ◽  
...  

Abstract. In this study, we characterize the transport of ozone from Africa to Asia through the analysis of the simulations of a global chemical transport model, GEOS-Chem, from 1987 to 2006. The receptor region Asia is defined within 5–60∘ N and 60–145∘ E, while the source region Africa is within 35∘ S–15∘ N and 20∘ W–55∘ E and within 15–35∘ N and 20∘ W–30∘ E. The ozone generated in the African troposphere from both natural and anthropogenic sources is tracked through tagged ozone simulation. Combining this with analysis of trajectory simulations using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, we find that the upper branch of the Hadley cell connects with the subtropical westerlies in the Northern Hemisphere (NH) to form a primary transport pathway from Africa to Asia in the middle and upper troposphere throughout the year. The Somali jet that runs from eastern Africa near the equator to the Indian subcontinent in the lower troposphere is the second pathway that appears only in NH summer. The influence of African ozone mainly appears over Asia south of 40∘ N. The influence shows strong seasonality, varying with latitude, longitude, and altitude. In the Asian upper troposphere, imported African ozone is largest from March to May around 30∘ N (12–16 ppbv) and lowest during July–October around 10∘ N (∼ 2 ppbv). In the Asian middle and lower troposphere, imported African ozone peaks in NH winter between 20 and 25∘ N. Over 5–40∘ N, the mean fractional contribution of imported African ozone to the overall ozone concentrations in Asia is largest during NH winter in the middle troposphere (∼ 18 %) and lowest in NH summer throughout the tropospheric column (∼ 6 %). This seasonality mainly results from the collective effects of the ozone precursor emissions in Africa and meteorology and chemistry in Africa, in Asia and along the transport pathways. The seasonal swing of the Hadley circulation and subtropical westerlies along the primary transport pathway plays a dominant role in modulating the seasonality. There is more imported African ozone in the Asian upper troposphere in NH spring than in winter. This is likely due to more ozone in the NH African upper troposphere generated from biogenic and lightning NOx emissions in NH spring. The influence of African ozone on Asia appears larger in NH spring than in autumn. This can be attributed to both higher altitudes of the elevated ozone in Africa and stronger subtropical westerlies in NH spring. In NH summer, African ozone hardly reaches Asia because of the blocking by the Saharan High, Arabian High, and Tibetan High on the transport pathway in the middle and upper troposphere, in addition to the northward swing of the subtropical westerlies. The seasonal swings of the intertropical convergence zone (ITCZ) in Africa, coinciding with the geographic variations of the ozone precursor emissions, can further modulate the seasonality of the transport of African ozone, owing to the functions of the ITCZ in enhancing lightning NOx generation and uplifting ozone and ozone precursors to upper layers. The strength of the ITCZ in Africa is also found to be positively correlated with the interannual variation of the transport of African ozone to Asia in NH winter. Ozone from NH Africa makes up over 80 % of the total imported African ozone over Asia in most altitudes and seasons. The interhemispheric transport of ozone from southern hemispheric Africa (SHAF) is most evident in NH winter over the Asian upper troposphere and in NH summer over the Asian lower troposphere. The former case is associated with the primary transport pathway in NH winter, while the latter case is associated with the second transport pathway. The intensities of the ITCZ in Africa and the Somali jet can each explain ∼ 30 % of the interannual variations in the transport of ozone from SHAF to Asia in the two cases.


2017 ◽  
Vol 34 (1) ◽  
pp. 73-100 ◽  
Author(s):  
Oreste Reale ◽  
Deepthi Achuthavarier ◽  
Marangelly Fuentes ◽  
William M. Putman ◽  
Gary Partyka

AbstractThe National Aeronautics and Space Administration (NASA) nature run (NR), released for use in observing system simulation experiments (OSSEs), is a 2-yr-long global nonhydrostatic free-running simulation at a horizontal resolution of 7 km, forced by observed sea surface temperatures (SSTs) and sea ice, and inclusive of interactive aerosols and trace gases. This article evaluates the NR with respect to tropical cyclone (TC) activity. It is emphasized that to serve as an NR, a long-term simulation must be able to produce realistic TCs, which arise out of realistic large-scale forcings. The presence in the NR of the relevant dynamical features over the African monsoon region and the tropical Atlantic is confirmed, along with realistic African easterly wave activity. The NR Atlantic TC seasons, produced with 2005 and 2006 SSTs, show interannual variability consistent with observations, with much stronger activity in 2005. An investigation of TC activity over all the other basins (eastern and western North Pacific Ocean, north and south Indian Ocean, and Australian region), together with important elements of the atmospheric circulation, such as the Somali jet and westerly bursts, reveals that the model captures the fundamental aspects of TC seasons in every basin, producing a realistic number of TCs with realistic tracks, life spans, and structures. This confirms that the NASA NR is a very suitable tool for OSSEs targeting TCs and represents an improvement with respect to previous long simulations that have served the global atmospheric OSSE community.


2016 ◽  
Vol 73 (8) ◽  
pp. 3197-3212 ◽  
Author(s):  
Ho-Hsuan Wei ◽  
Simona Bordoni

Abstract The Somali jet, a strong low-level cross-equatorial flow concentrated in a narrow longitudinal band near the coast of Somalia, is a key feature of the South Asian monsoon (SAM) circulation. Previous work has emphasized the role of the East African highlands in strengthening and concentrating the jet. However, the fundamental dynamics of the jet remains debated, as does its relation to the SAM precipitation. In this study, numerical experiments with modified topography over Africa are conducted with the GFDL atmospheric model, version 2.1 (AM2.1), general circulation model (GCM) to examine the influence of topography on the Somali jet and the SAM precipitation. It is found that when the African topography is removed, the SAM precipitation moderately increases in spite of a weakening of the cross-equatorial Somali jet. The counterintuitive precipitation increase is related to lower-level cyclonic wind anomalies, and associated meridional moisture convergence, which develop over the Arabian Sea in the absence of the African topography. Potential vorticity (PV) budget analyses along particle trajectories show that this cyclonic anomaly primarily arises because, in the absence of the blocking effect by the African topography and with weaker cross-equatorial flow, air particles originate from higher latitudes with larger background planetary vorticity and thus larger PV.


Sign in / Sign up

Export Citation Format

Share Document