scholarly journals Various moving average convergence divergence trading strategies: a comparison

2016 ◽  
Vol 13 (2) ◽  
pp. 363-369 ◽  
Author(s):  
Nguyen Hoang Hung

Some studies published recently (Dejan Eric, 2009; R. Rosillo, 2013; Terence Tai-Leung Chong, 2008; Ülkü and Prodan, 2013) uncover that moving average convergence divergence (MACD) trading rules have predictive ability in many countries. The MACD trading strategies applied by these papers to execute the trading signals are various. This study analyzes the performance of a MACD trading strategy (MACD-4 in the current study), which is applied popularly by practitioners, but was not tested by prior academicians. Furthermore, the author compares the performance of each of the strategies on a group of markets to identify the best one. Before considering the costs, the author finds that the MACD-4 trading strategy has predictive ability. The best performance is MACD strategy applied by Terence Tai-Leung Chong (2008). This strategy is also the most effective one if it is applied in a high trading cost environmentm because the numbers of trades created are the lowest. Especially, the strategy applied by R. Rosillo (2013) is unpredictable in the selected samples

In this article, we introduce a new methodology to empirically identify the primary strategies used by a trader using only post-trade fill data. To do this, we apply a well-established statistical clustering technique called k-means to a sample of progress charts, representing the portion of the order completed by each point in the day as a measure of a trade’s aggressiveness. Our methodology identifies the primary strategies used by a trader and determines which strategy the trader used for each order in the sample. Having identified the strategy used for each order, trading cost analysis can be performed by strategy. We also discuss ways to exploit this technique to characterize trader behavior, assess trader performance, and suggest the appropriate benchmarks for each distinct trading strategy.


2017 ◽  
Vol 11 (1) ◽  
pp. 1-26
Author(s):  
Efstathios Xanthopoulos ◽  
Konstantinos Aravossis ◽  
Spyros Papathanasiou

This paper investigates the profitability of technical trading rules in the Athens Stock Exchange (ASE), utilizing the FTSE Large Capitalization index over the seven-year period 2005-2012, which was before and during the Greek crisis. The technical rules that will be explored are the simple moving average, the envelope (parallel bands) and the slope (regression). We compare technical trading strategies in the spirit of Brock, Lakonishok, and LeBaron (1992), employing traditional t-test and Bootstrap methodology under the Random Walk with drift, AR(1) and GARCH(1,1) models. We enrich our analysis via Fourier analysis technique (FFT) and more statistical tests. The results provide strong evidence on the profitability of the examined technical trading rules, even during recession period (2009-2012), and contradict the Efficient Market Hypothesis.


2020 ◽  
Vol 12 (2) ◽  
pp. 165-176
Author(s):  
Muhammad Arif ◽  
Abdul Rauf Laghari ◽  
Avinash Advani

This study examines the profitability of Moving Averages (MA) timing strategy over the buy and hold strategy for individual stocks listed at Pakistan Stock Exchange (PSX). We applied Han, Yang, and Zhou (2013), methodology to individual stock returns and found inconclusive evidence of MA timing strategy’s predictive ability to earn higher returns over buy and hold strategy. We also report market risk-adjusted returns to remove any market movement effects and apply alternative moving averages lag lengths to check the robustness of our results. We observe individual stock returns are noisier than portfolio returns and the simple technical trading rule of moving average lack the ability to predict individual stock returns. We propose the use of more complex trading rules in future studies to ascertain the profitability of technical trading rules in individual stocks.


J ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 508-560
Author(s):  
Riccardo Corradini

Normally, econometric models that forecast the Italian Industrial Production Index do not exploit information already available at time t + 1 for their own main industry groupings. The new strategy proposed here uses state–space models and aggregates the estimates to obtain improved results. The performance of disaggregated models is compared at the same time with a popular benchmark model, a univariate model tailored on the whole index, with persistent not formally registered holidays, a vector autoregressive moving average model exploiting all information published on the web for main industry groupings. Tests for superior predictive ability confirm the supremacy of the aggregated forecasts over three steps horizon using absolute forecast error and quadratic forecast error as a loss function. The datasets are available online.


2020 ◽  
Vol 218 ◽  
pp. 01026
Author(s):  
Qihang Ma

The prediction of stock prices has always been a hot topic of research. However, the autoregressive integrated moving average (ARIMA) model commonly used and artificial neural networks (ANN) still have their own advantages and disadvantages. The use of long short-term memory (LSTM) networks model for prediction also shows interesting possibilities. This article compares three models specifically through the analysis of the principles of the three models and the prediction results. In the end, it is believed that the LSTM model may have the best predictive ability, but it is greatly affected by the data processing. The ANN model performs better than that of the ARIMA model. The combination of time series and external factors may be a worthy research direction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Veerasak Punyapornwithaya ◽  
Katechan Jampachaisri ◽  
Kunnanut Klaharn ◽  
Chalutwan Sansamur

Milk production in Thailand has increased rapidly, though excess milk supply is one of the major concerns. Forecasting can reveal the important information that can support authorities and stakeholders to establish a plan to compromise the oversupply of milk. The aim of this study was to forecast milk production in the northern region of Thailand using time-series forecast methods. A single-technique model, including seasonal autoregressive integrated moving average (SARIMA) and error trend seasonality (ETS), and a hybrid model of SARIMA-ETS were applied to milk production data to develop forecast models. The performance of the models developed was compared using several error matrices. Results showed that milk production was forecasted to raise by 3.2 to 3.6% annually. The SARIMA-ETS hybrid model had the highest forecast performances compared with other models, and the ETS outperformed the SARIMA in predictive ability. Furthermore, the forecast models highlighted a continuously increasing trend with evidence of a seasonal fluctuation for future milk production. The results from this study emphasizes the need for an effective plan and strategy to manage milk production to alleviate a possible oversupply. Policymakers and stakeholders can use our forecasts to develop short- and long-term strategies for managing milk production.


2012 ◽  
Author(s):  
Πρόδρομος Τσινασλανίδης

Technical analysis (TA) is considered as an “economic” test for the random walk 2 hypothesis and thus for the weak form Efficiency Market Hypothesis (EMH). Advocates of TA assert that it is plausible to forecast future evolutions of financial assets‟ price paths with a bundle of technical tools conditioned on historical prices. Among these tools, we can identify technical patterns, which are specific forms of price paths‟ evolutions which are mainly identified visually. When such pattern is confirmed, a technician expects prices to evolve with a specific way. Although, bibliography on testing the efficacy of TA is massive, only a minor fraction of it deals with technical patterns. Various cognitive biases affecting practitioners‟ trading and investment activities and subjectivity embedded in the pattern‟s recognition process via visual assessment, set significant barriers in any attempt to evaluate the performance of trading strategies including such patterns. In this thesis we propose novel, rule-based, identification mechanisms for a set of well known technical patterns classified in the following three general categories: horizontal, zig-zag and circular patterns. The novelty of the proposed methodologies resides in the manner the identification mechanisms are designed. Core principles of TA, regarding the pattern identification via visual assessment are being quantified and the proposed recognizers outperform already existed ones to the fact that they identify all variations of the examined patterns regardless of their size, in a more objective manner. Thus, we believe that the proposed methodologies can set another basis for the development of more sophisticated automatic trading systems and more comprehensive and robust evaluations of TA in general. Implications for the industry and the finance community are also plausible. Software programs (or packages) of TA can include these recognizers in the bundle of all other technical indicators they provide within their services. Finally, practitioners may include these trading rules within their investment and trading activities, after assessing their performance individually, enhancing them (if necessary), or modifying them according to their idiosyncratic investment profile. We subsequently proceed to the individual and joint evaluation of the examined patterns‟ performance. For this purpose we use a variety of datasets (artificially created, US stocks and worldwide market indices) and assess generated returns with ordinary statistical tests, bootstrapped techniques and artificial neural networks. Our empirical findings are either new or comparable with already existed ones. To our point of view, some of the most significant and interesting are the followings: 1) Technical patterns were successfully identified in stochastically generated price paths. Thus, it is reasonable to expect their appearance in real price series too. 2) For specific patterns, when applied on stochastic price series, frequencies of observations, and returns‟ characteristics were similar with those observed in real price series. 3) Generally, our results are in favour of EMH. 4) Indications of market inefficiencies (if any) were more profound in the earlier sub-periods of examination, but not in recent ones. 5) Indications in favour of TA (if any) were observed when shorter holding periods were used. 6) Technical trading rules may successfully predict trend reversals, trend continuations or the sign of future returns, but they fail to generate systematically, statistically significant excess returns. The latter finding, if combined with a variety of cognitive biases included in investors‟ decision making processes, may reason for the apparent wide-spread implementation of TA within the everyday trading and investment activities of practitioners. This thesis is not the first published attempt to quantify such technical patterns and assess the generalised efficacy of TA. However, to our knowledge, the manner we approached the aforementioned issues is new. We believe that the proposed methodologies outperform already existed ones and implications of this thesis to academia and finance industry are significant.


2000 ◽  
Vol 26 (6) ◽  
pp. 49-62 ◽  
Author(s):  
Parvez Ahmed ◽  
Kristine Beck ◽  
Elizabeth Goldreyer

Sign in / Sign up

Export Citation Format

Share Document