scholarly journals Optical coherence tomography in patients with somatotropin-producing pituitary adenoma

2021 ◽  
Vol 14 (2) ◽  
pp. 81-84
Author(s):  
N. A. Gavrilova ◽  
N. S. Gadzhieva ◽  
A. V. Kuz’mina

Optical coherence tomography (OCT) is widely used in ophthalmological practice. The review presents the results of OCT in patients with somatotropin-producing pituitary adenoma, or somatotropinoma, which is a hormone-active tumor of the adenohypophysis, characterized by excessive production of somatotropic hormone (STH). It stimulates the secretion of type I insulin-like growth factor (IGF-I). The mechanisms of STH action (pro-angiogenic action, stimulation endothelial cell proliferation and migration, development of endothelial dysfunction and retinal edema) requires much attention to the results of examination of patients with somatotropinomas using modern diagnostic methods, such as OCT.

2013 ◽  
Vol 202 (6) ◽  
pp. 937-950 ◽  
Author(s):  
Qingwei Zhu ◽  
Yong Hwan Kim ◽  
Douglas Wang ◽  
S. Paul Oh ◽  
Kunxin Luo

In endothelial cells, two type I receptors of the transforming growth factor β (TGF-β) family, ALK1 and ALK5, coordinate to regulate embryonic angiogenesis in response to BMP9/10 and TGF-β. Whereas TGF-β binds to and activates ALK5, leading to Smad2/3 phosphorylation and inhibition of endothelial cell proliferation and migration, BMP9/10 and TGF-β also bind to ALK1, resulting in the activation of Smad1/5. SnoN is a negative regulator of ALK5 signaling through the binding and repression of Smad2/3. Here we uncover a positive role of SnoN in enhancing Smad1/5 activation in endothelial cells to promote angiogenesis. Upon ligand binding, SnoN directly bound to ALK1 on the plasma membrane and facilitated the interaction between ALK1 and Smad1/5, enhancing Smad1/5 phosphorylation. Disruption of this SnoN–Smad interaction impaired Smad1/5 activation and up-regulated Smad2/3 activity. This resulted in defective angiogenesis and arteriovenous malformations, leading to embryonic lethality at E12.5. Thus, SnoN is essential for TGF-β/BMP9-dependent biological processes by its ability to both positively and negatively modulate the activities of Smad-dependent pathways.


2018 ◽  
Vol 48 (4) ◽  
pp. 1804-1814 ◽  
Author(s):  
Xing Rong ◽  
Donghui Ge ◽  
Danping Shen ◽  
Xianda Chen ◽  
Xuliang Wang ◽  
...  

Background/Aims: Increasing evidence indicates that microRNAs (miRNAs) play important roles in Kawasaki disease (KD). Our previous study demonstrated that hsa-miR-27b-3p (miR-27b) was up-regulated in KD serum. However, the specific role of miR-27b in KD remains unclear. We aimed to investigate that miR-27b could be a biomarker and therapeutic target for KD treatment. As well, the specific mechanism of miR-27b effecting endothelial cell functions was studied. Methods: The expression of miR-27b and Smad7 was measured by qRT-PCR. Gain-of-function strategy was used to observe the effect of miR-27b on human umbilical vein endothelial cells (HUVECs) proliferation and migration. Bioinformatics analyses were applied to predict miR-27b targets and then we verified Smad7 by a luciferase reporter assay. Western blot was performed to detect the protein expression of Smad7, PCNA, MMP9, MMP12 and TGF-β-related genes. Results: We confirmed that miR-27b was shown to be dramatically up-regulated in KD serum and KD serum-treated HUVECs and that elevated expression of miR-27b suppressed the proliferation and migration of HUVECs. Furthermore, our results verified that miR-27b mediated cell functions by affecting the TGF-β via targeting Smad7 in HUVECs. Conclusion: These results suggested that up-regulated miR-27b had a protective role in HUVECs proliferation and migration via targeting Smad7 and affecting TGF-β pathway. Therefore, miR-27b represented a potential biomarker for KD and may serve as a promising therapeutic target for KD treatment.


2016 ◽  
Vol 21 (2) ◽  
pp. 029801 ◽  
Author(s):  
Sebastian Siebelmann ◽  
Philipp Steven ◽  
Deniz Hos ◽  
Gereon Hüttmann ◽  
Eva Lankenau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document