scholarly journals Effect of Cover Crops, and the Management Thereof, on the Weed Spectrum in a Drip-irrigated Vineyard: 2. Weeds Growing From Grapevine Berry Set to Post-harvest

2017 ◽  
Vol 38 (2) ◽  
Author(s):  
J.C. Fourie ◽  
E.C. Kunjeku ◽  
M. Booyse ◽  
T.G. Kutama ◽  
K. Freitag ◽  
...  
1992 ◽  
Vol 72 (1) ◽  
pp. 269-274
Author(s):  
Linnell M. Edwards ◽  
John M. Sadler

Winter rye was broadcast into a potato crop just after topkilling with the object of avoiding post-harvest delays in establishing a winter ground cover. Rye treatments were interseeded (i) at intervals of 1 d for up to 10 d before potato digging, without post-harvest tillage and (ii) just after digging and preparatory seedbed tillage as a comparative standard. Generally, cover performance of rye, measured as plant count, tiller count or dry mass of plants showed significant (P < 0.05) increase with decreasing days to potato digging up to 3 or 4 d before digging. There was no sacrifice of rye cover using this inter-seeding approach compared with traditional post-(potato) harvest seeding in a prepared seedbed. Seeding 3–4 d before potato harvest is recommended on the basis of superior fall plant count, spring tiller count and shoot dry mass, and winter survival indices on either of these days.Key words: Cover crops, winter rye, winter survival, companion cropping


Author(s):  
John M. Wallace ◽  
Sarah Isbell ◽  
Ron Hoover ◽  
Mary Barbercheck ◽  
Jason Kaye ◽  
...  

Abstract Organic grain producers are interested in interseeding cover crops into corn (Zea mays L.) in regions that have a narrow growing season window for post-harvest establishment of cover crops. A field experiment was replicated across 2 years on three commercial organic farms in Pennsylvania to compare the effects of drill- and broadcast-interseeding to standard grower practices, which included post-harvest seeding cereal rye (Secale cereale L.) at the more southern location and winter fallow at the more northern locations. Drill- and broadcast-interseeding treatments occurred just after last cultivation and used a cover crop mixture of annual ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot] + orchardgrass (Dactylis glomerata L.) + forage radish (Raphanus sativus L. ssp. longipinnatus). Higher mean fall cover crop biomass and forage radish abundance (% of total) was observed in drill-interseeding treatments compared with broadcast-interseeding. However, corn grain yield and weed suppression and N retention in late-fall and spring were similar among interseeding treatments, which suggests that broadcast-interseeding at last cultivation has the potential to produce similar production and conservation benefits at lower labor and equipment costs in organic systems. Post-harvest seeding cereal rye resulted in greater spring biomass production and N retention compared with interseeded cover crops at the southern location, whereas variable interseeding establishment success and dominance of winter-killed forage radish produced conditions that increased the likelihood of N loss at more northern locations. Additional research is needed to contrast conservation benefits and management tradeoffs between interseeding and post-harvest establishment methods.


2022 ◽  
Vol 9 ◽  
Author(s):  
Sarah Köbke ◽  
Hongxing He ◽  
Matthias Böldt ◽  
Haitao Wang ◽  
Mehmet Senbayram ◽  
...  

Oilseed rape (Brassica napus L.) is an important bioenergy crop that contributes to the diversification of renewable energy supply and mitigation of fossil fuel CO2 emissions. Typical oilseed rape crop management includes the use of nitrogen (N) fertilizer and the incorporation of oilseed rape straw into soil after harvest. However, both management options risk increasing soil emissions of nitrous oxide (N2O). The aim of this 2-years field experiment was to identify the regulating factors of N cycling with emphasis on N2O emissions during the post-harvest period. As well as the N2O emission rates, soil ammonia (NH4+) and nitrate (NO3−) contents, crop residue and seed yield were also measured. Treatments included variation of fertilizer (non-fertilized, 90 and 180 kg N ha−1) and residue management (straw remaining, straw removal). Measured N2O emission data showed large intra- and inter-annual variations ranging from 0.5 (No-fert + str) to 1.0 kg N2O-N ha−1 (Fert-180 + str) in 2013 and from 4.1 (Fert-90 + str) to 7.3 kg N2O-N ha−1 (No-fert + str) in 2014. Cumulative N2O emissions showed that straw incorporation led to no difference or slightly reduced N2O emissions compared with treatments with straw removal, while N fertilization has no effect on post-harvest N2O emissions. A process-based model, CoupModel, was used to explain the large annual variation of N2O after calibration with measured environmental data. Both modeled and measured data suggest that soil water-filled pore space and temperature were the key factors controlling post-harvest N2O emissions, even though the model seemed to show a higher N2O response to the N fertilizer levels than our measured data. We conclude that straw incorporation in oilseed rape cropping is environmentally beneficial for mitigating N2O losses. The revealed importance of climate in regulating the emissions implies the value of multi-year measurements. Future studies should focus on new management practices to mitigate detrimental effects caused by global warming, for example by using cover crops.


Weed Research ◽  
2015 ◽  
Vol 55 (3) ◽  
pp. 309-319 ◽  
Author(s):  
B Ringselle ◽  
G Bergkvist ◽  
H Aronsson ◽  
L Andersson
Keyword(s):  

2021 ◽  
Vol 64 (4) ◽  
pp. 1403-1413
Author(s):  
Ryan G. Barnes ◽  
C. Alan Rotz ◽  
Heather E. Preisendanz ◽  
Jack E. Watson ◽  
Herschel A. Elliott ◽  
...  

HighlightsThree crop scenarios for eight dairy farm types were simulated using the Integrated Farm System Model.Cover cropping and interseeding each significantly reduced runoff losses, compared to the baseline, for most farm types.Interseeding averaged greater reductions in N, P, and sediment losses than cover cropping.Increases in average annual production costs were &lt;2% of the baseline for most farm types.Abstract. Intensive agricultural activities are known to increase nutrient and sediment losses, leading to degraded water quality in receiving water bodies. In the Chesapeake Bay watershed, animal operations must reduce farm-level nutrient and sediment losses to meet federally mandated load reduction goals. This work investigated the potential water quality benefits and economic impacts of adopting post-harvest cover cropping or interseeded cover cropping on eight dairy farms representative of common operations in central Pennsylvania. The farms, simulated with the Integrated Farm System Model (IFSM), represented confined, organic, grazing, and Amish farming practices for dairy herds ranging in size from 35 to 150 lactating Holstein cows. Simulations were run for 25 years using observed weather data for Mifflin County, Pennsylvania, and for the dominant agricultural soil series in the county: Hagerstown silt loam. Model output included water balance results, nutrient and sediment loads, and farm-scale economics at an annual scale. Overall, simulation results showed that post-harvest cover cropping reduced N, P, and sediment by 18%, 17%, and 42%, respectively, while interseeding reduced loads by 49%, 41%, and 46%, respectively. Economic impacts of cover cropping and interseeding varied among farm types, but nearly all scenarios resulted in a net loss in profit compared to the baseline. However, annual economic losses were relatively minor: less than $28 ha-1 for cover cropping and $63 ha-1 for interseeding. Results suggest that the benefits of interseeding cover crops are greater for farms with larger portions of land in row crops with less perennial grassland. Interseeding necessitates purchasing additional equipment or custom hiring the seeding operation. These results have implications for cost-share incentive structures aimed at promoting adoption of cover crops and interseeding, especially for confined farms, which may otherwise experience financial losses if these practices are adopted. Keywords: Best management practice, Conservation, Economic evaluation, Erosion, IFSM, Integrated Farm System Model, Nutrient transport, Water quality.


1996 ◽  
Vol 127 (2) ◽  
pp. 215-229 ◽  
Author(s):  
M. A. Shepherd ◽  
E. I. Lord

SUMMARYAgronomic practices can be modified to decrease autumn soil nitrate and nitrate leaching. This experiment aimed to measure the effectiveness of such practices when integrated into a farming system under UK conditions. The experiment started in autumn 1988 on a sandy soil in Nottinghamshire, UK, and comprised a four-course rotation of potatoes–cereal–sugarbeet–cereal. Three husbandry systems were superimposed, ranging from current commercial practice to most nitrate retentive. Plots were split further to receive either half or full recommended rates of nitrogen (N) fertilizer. Soil mineral N (Nmin) and nitrate leaching (using porous ceramic cups) were measured on selected treatments; this paper presents the findings after five winters.Autumn Nmin and N leached were strongly influenced by the previous crop, consistently following the order potatoes > cereal > sugarbeet. Pre-harvest management (chiefly N fertilizer input) affected Nmin, and post-harvest management also modified N loss. Cover crops (winter rye or forage rape) after cereals removed 10–40 kg/ha N, depending on previous N management, time and method of establishment. They decreased leaching and were particularly effective if they were able to establish fully before significant drainage occurred. Nmin following sugarbeet, which had received 125 kg/ha N, was less after November lifting than after October lifting (16 and 28 kg/ha N, respectively, as amean of autumns 1989–92). Potatoes left most Nmin (a mean of 60 kg/ha for autumns 1989–92, receiving 220 kg/ha fertilizer N), and their late harvest gave little scope for decreasing leaching losses by establishing green cover before the start of winter. After late harvested root crops (both beet and potatoes), it was often preferable to leave the land fallow over winter, rather than ploughing and drilling a winter cereal.We show that nitrate leaching can be decreased by simple and inexpensive modifications to an existing crop rotation. Averaged over five winters, adopting such practices decreased the mean N concentration in drainage from 22·3 to 14·5 mg/1.


2018 ◽  
Vol 34 (2) ◽  
pp. 173-183 ◽  
Author(s):  
Arpit V. Joshi ◽  
◽  
Nilanjana S. Baraiya ◽  
Pinal B. Vyas ◽  
T. V. Ramana Rao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document