scholarly journals Effect of Thickness on Thermal Conductivity Based on Waste Newspaper Particle Board

2017 ◽  
Vol 3 (1) ◽  
pp. 210
Author(s):  
Yoan Theasy ◽  
Agus Yulianto ◽  
Budi Astuti

<p style="text-align: justify;">Waste newspaper by most people still considered as waste that has not been used optimally, and it is the one of processed materials from wood which has lignocellulose. The material has the potential to produce particle board to test the value of thermal conductivity, which it is expected to be used as heat insulator. The process of producing particle board is by mixing 450 grams pureed newspaper with 260 grams PVAC, then print it with size (12x7)cm2 with the thickness of 0.5cm; 1 cm; 1.5 cm; 2 cm; 2.5 cm; 3 cm. The process to make particle board drying is for 5 days and the test of thermal conductivity using a 100 watt heat source, and an infrared thermometer. The result obtained from the value of thermal conductivity from newspaper particle board is when more higher value of particle board thickness then more higher the thermal conductivity value. From these result it can be concluded that the particle board which can be used as heat insulation material is the one that has a thermal conductivity value of 0.066 W/ mC; 0.125 W/ mC; 0.0167 W/ mC with thickness range of 1 cm to 2 cm.©2017 JNSMR UIN Walisongo. All rights reserved.</p>

2016 ◽  
Vol 57 (3) ◽  
pp. 332-333 ◽  
Author(s):  
M. A. Vartanyan ◽  
R. I. Gerasimov ◽  
O. V. Pyren’kin ◽  
I. B. Dolbilova ◽  
A. V. Oistrakh ◽  
...  

2015 ◽  
Vol 72 ◽  
pp. 209-215 ◽  
Author(s):  
Indra Muizniece ◽  
Dagnija Blumberga ◽  
Ance Ansone

2014 ◽  
Vol 5 (2) ◽  
pp. 22-28
Author(s):  
S.H. Ibrahim ◽  
Sia W.K. ◽  
A. Baharun ◽  
M.N.M. Nawi ◽  
R. Affandi

 Energy consumption for residential use in Malaysia is keep increasing yearly in order to maintain the internal thermal comfort of the building. Roof insulation material plays a vital role in improving the thermal comforts of the building while reduce the cooling load of the building. Oil palm industry in Malaysia had grown aggressively over the past few decades. Tons of oil palm waste had produced during the process such as empty fruit bunch fiber. Another waste material that available and easy to obtain is paper. Paper is a valuable material that can be recycled. Waste paper comes from different sources such as newspaper, office and printing papers. This study will take advantage of the available resources which could contribute to reduce the environment impact. The aim of this study is to investigate the thermal performance of roof insulation materials using mixture of oil palm fiber and paper pulp with different ratio and thickness. This study found that the thermal performance of the paper pulp is slightly better compare to the oil palm fiber. Thermal conductivity of the particle board reduces around 4.1% by adding the 10% of paper pulp into the total density of the particle board. By adding 75% of paper pulp, the thermal conductivity of the particle board could be reduced to 24.6% compare to the oil palm fiber board under the similar condition. Therefore, from this study, it could be concluded that paper pulp has high potential to be used as a building insulation material.


Author(s):  
Martins Andzs ◽  
Voldemars Skrupskis

Obtaining of a new ecological heat insulation material from always renewable raw material in nature, wood and hemp, derived from wood and hemp fibre remains left from the production process. The study was carried out to find hemp wood parts (shives), fiber, and material first possible compositions together with wood fibres, to produce heat insulation materials. The use of the heat insulation material would be meant for dwelling and recreation houses. In the present research the main characteristics of these materials are determined: moisture content, density, water absorption, as well as the coefficient of heat transmission.


2012 ◽  
Vol 535-537 ◽  
pp. 1609-1614 ◽  
Author(s):  
Hui Min Liu

To prevent a long nozzle (LN) of non-preheating from rupture caused by thermal shock, heat insulation material (HIM) with a lower coefficient of thermal conductivity (CTC) was compounded in the inner hole (inner layer) or around the outer wall (outer layer), and the thermal stress was investigated. The two-dimension axially symmetric model of LN was proposed by simplifying the structure and boundary conditions. The influences of the HIM to the thermal stress of LN were analyzed by finite element method. The results show that the thermal stress suffered by LN can be drastically reduced by the inner layer, making the slow variation, but when its thickness increases from 2 mm to 3 mm, it almost has no influence on the thermal stress. The maximum thermal stress at the neck of LN reduces with the depression of the CTC at the inner layer thickness of 2 mm. The maximum thermal stress of LN can’t be reduced by outer layer, but the lasting time of higher stress can be shortened, and the thermal stress at the later period of steel-irrigating can be lowed. When the outer layer thickness is more than 2 mm, the increase of it has little influence on the thermal stress of LN, and the change of its CTC has little influence on the thermal stress either. The LN with tri-layer has lower thermal stress during all the period of steel-irrigating.


Sign in / Sign up

Export Citation Format

Share Document