scholarly journals Properties of Lactic Acid Microorganisms: Long-Term Preservation Methods

2019 ◽  
Vol 48 (4) ◽  
pp. 30-38 ◽  
Author(s):  
Ольга Кригер ◽  
Olga Kriger ◽  
Светлана Носкова ◽  
Svetlana Noskova

Among the relevant studies on lactic acid bacteria there are projects devoted to the multienzyme complexes of starter cultures, new competitive bacterial concentrates and their use in fermented functional milk products. In fermented milk production, the process of albuminolysis has a significant impact on the consistency, taste, and smell of the product. Therefore, lactic acid bacteria with high proteolytic properties are of the greatest interest for fermented milk industry. The present research features long- term methods for preservation of the properties of lactic acid microorganisms. The experiment defined the regime parameters of combined starter lyophilisation. The results prove that fermented milk production requires high-quality starter strains. The authors developed a long-term method for preservation of properties of particular strains of lactic acid microorganisms. The method presupposes freeze-drying with the following parameters: freezing temperature – minus 25°C in a protective 5%-glycerol medium (90 minutes); the drying temperature – 30°C (6 hours); refrigerating load – 5.45 kW/m²; residual pressure – 0.6‒0.8 kPa, bed depth – 2 mm. The authors also developed the necessary documentation (No. 9225-096-02054145-2013), procedures, and formula of the fermented milk product with a combined direct application starter.

Author(s):  
Maria Tereza Pereira ◽  
Elsa Helena Walter de Santana ◽  
Joice Sifuentes dos Santos

Produtos lácteos fermentados contêm bactérias ácido lácticas (BAL), naturalmente presentes ou adicionadas na matriz láctea como culturas iniciadoras (starters), contribuindo com aroma, textura, valor nutricional e segurança microbiológica. Lactobacillus spp., Streptococcus spp., Lactococcus spp. e Leuconostoc spp. são utilizados como culturas starters em laticínios. As BAL podem ser classificadas em mesofílicas (ex Lactococcus lactis) e termofílicas (ex Streptococcus thermophilus), e de acordo com seus metabólitos de fermentação em homofermentativas (ácido lático) e heterofermentativas (ácido lático, dióxido de carbono, diacetil e outros compostos flavorizantes). Entre as BAL há um grupo de bactérias lácticas que não fazem parte da cultura láctica (non starter lactic acid bacteria - NSLAB), que são oriundas do leite cru, do ambiente de ordenha ou da indústria formando biofilmes. As NSLAB são representadas por espécies heterofermentativas de lactobacilos mesofílicos como Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. e L. plantarum spp., e ainda por Pediococcus spp., Leuconostoc spp. e Micrococcus spp. NSLAB termoduricas como Bacillus spp. também são relatadas. As NSLAB em queijos podem ajudar a desenvolver sabor e aroma, porém também são associadas aos defeitos em queijos e leites fermentados. Problemas como odores estranhos, sabor amargo ou muito ácido, perda de viscosidade, perda de coloração, estufamento e formação de gás são associados com a presença e contaminação por NSLAB. Assim, as BAL são importantes micro-organismos na indústria láctea, garantindo sabores e aromas aos derivados. Já a presença de NSLAB podem ser associados com defeitos em queijos e leites fermentados, sendo um problema na indústria beneficiadora.   Palavras-chave: Característica Sensorial. Leites Fermentados. Queijo. Textura.                       Abstract Fermented dairy products contain acid bacteria (BAL) naturally present or added to the dairy matrix as starter cultures (starters), contributing to aroma, texture, nutritional value and microbiological safety. Lactobacillus spp., Streptococcus spp., Lactococcus spp. and Leuconostoc spp. are used as starter dairy crops. As BAL it can be classified as mesophilic (ex: Lactococcus lactis) and thermophilic (ex: Streptococcus thermophilus), and agree with its fermentation metabolites in homofermentative (lactic acid) and heterofermentative (lactic acid, carbon dioxide, diacetyl and other flavorings). Among the BAL, there is a group of lactic bacteria that are not part of the dairy culture (non-initiating lactic acid bacteria - NSLAB) that originate from raw milk, the milking environment or the biofilm-forming industry. NSLAB is represented by heterofermentative species of mesophilic lactobacilli such as Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. and L. plantarum spp., and also by Pediococcus spp., Leuconostoc spp. and Micrococcus spp. Termoduric NSLAB such as Bacillus spp. are also related. NSLAB in cheeses may help develop flavor and aroma, and they are also associated with defects in fermented cheeses and milks. Problems such as strange odors, bitter or very acidic taste, loss of viscosity, loss of color, establishment and gas training are associated with the presence and contamination by NSLAB. Thus,  BALs are important microorganisms in the dairy industry, contributing to the dairy flavors and aromas. The presence of NSLAB, on the other hand, can be associated with defects in fermented milk and cheese, being a problem in the processing industry.   Keywords: Cheese. Fermented Milk. Sensory Characteristic. Texture.


Author(s):  
Hana Šulcerová ◽  
Radka Burdychová

Nowadays, we can see on market mainly fermented milk products with addition of probiotic microorganisms, especially strains of Lactobacillus and Bifidobacterium. We can meet also other types of pro­bio­tic products. It is recommended to consume at least 100 grams of fermented milk products with mi­ni­mal concentration of 106 of probiotics in one gram or mililitr of product daily for reaching positive effect on men’s health. During fermentation of the carbohydrates, proteins and lipids are disunite and many of aromatic compounds ane compose. They give a typical sensory characteristic to fermented milk products. For quality and quantity level of probiotics, changes of pH value and sensory qua­li­ty of five kinds of fermented milk product Yoghurt Drink with different flavour were analyzed during the whole expiration period (28 days). Obtained results were statistically evaluated via the analysis of variance and the method of multiple comparison according to Tukey test (P < 0,010) and (P < 0,001). During the minimal endurance time lactic acid bacteria and Bifidobacterium sp. were evaluated and changes of descriptors and pH value were detected. Number of LAB was up to 107 CFU/ml in all samples during 28 days of analysis. Only at sample 2 the number of LAB was 106 CFU/ml. Bifidobacterium sp. grew about degree. The number of LAB and Bifidobacterium sp. of yoghurt drink correspond with public notice number 77/2003 Sb, LAB 107 nad Bifidobacterium sp. 106 KTJ / ml. During 28 days of storage the pH value decreased. The biggest pH drop was recorded between 21. and 28. days of sto­ra­ge in all samples. The beginning pH value was 4.03–4.07 and the final value was between 3.80–3.95.The results of sensory evaluation processed by analysis of dispersion according to type were statistically conlusive in descriptors thickness, texture, intensity of smell, pleasantness of taste and general impression. The results of sensory evaluation processed by analysis of dispersion according to days of storage were statistically conlusive in descriptor pleasantness of smell.


2021 ◽  
Vol 14 (5) ◽  
pp. 63-73
Author(s):  
I. M. Korniienko ◽  

Lactic acid bacteria play a key role in human microecology and biotechnology – form organoleptic characteristics of products, increase the nutritional, including biological value of functional foods. Natural resistance to antibiotics is one of the important factors that determine the probiotic properties of lacto- and bifidobacteria. Aim. Study of the antibiotic resistance of functionally active probiotic cultures of "VIVO probioyogurt" leaven to determine the possibility of using a fermented milk product, which is prepared on its basis, during antibiotic therapy to maintain and restore normal intestinal microflora. Methods. Pure cultures of lactic acid bacteria (LAB) were selected for the study: (Lactobacillus delbrueckii ssp., L. acidophilus, L.casei, L. rhamnosus, L.paracasei, Streptococcus thermophilus, Bifidobacterium lactis (2 strains), B. infantis), which are part of leaven "VIVO probioyogurt" the quality of which is confirmed by certificates of the International Organization for Standardization ISO 9001: 2008, as well as ISO 22000: 2005. The method of the experiment consisted of the following stages: preparation of nutrient media ("Lactobacagar", "Bifidoagar", glucose-peptone medium), working solutions of antibiotics; working suspension of LAB; suspensions of cultures (lacto- and bifidobacteria), cultivation LAB on elective nutrient media with the addition of antibiotics and evaluation of research results. Determination of antibiotic resistance of LAB was performed by the method of double dilutions. Results. The use of this technique enabled to establish the minimum inhibitory concentration (MIC) of antibiotics of different groups relative to the LAB. The results of the research were processed using a licensed computer program Microsoft Excel. Conclusions. Evaluation of the results of studies to determine the MIC of antibiotics – benzylpenicillin, azithromycin, lincomycin, gentamicin sulfate, ceftriaxone, norfloxacin, amoxil, streptomycin, tetracycline, erythromycin in relation to IBD; fermented milk product, which was prepared on the basis of this starter culture, it was advisable to use during antibiotic therapy to restore and maintain normal intestinal microflora.


LWT ◽  
2016 ◽  
Vol 68 ◽  
pp. 202-207 ◽  
Author(s):  
Takashi Kuda ◽  
Manami Kataoka ◽  
Maki Nemoto ◽  
Miho Kawahara ◽  
Hajime Takahashi ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 320
Author(s):  
Boris Le Nevé ◽  
Adrian Martinez-De la Torre ◽  
Julien Tap ◽  
Muriel Derrien ◽  
Aurélie Cotillard ◽  
...  

Background: Healthy plant-based diets rich in fermentable residues may induce gas-related symptoms. Our aim was to determine the potential of a fermented milk product with probiotics in improving digestive comfort with such diets. Methods: In an open design, a 3-day high-residue diet was administered to healthy subjects (n = 74 included, n = 63 completed) before and following 28 days consumption of a fermented milk product (FMP) containing Bifidobacterium animalis subsp. lactis CNCM I-2494 and lactic acid bacteria. Main outcomes: digestive sensations, number of daytime anal gas evacuations, and gas volume evacuated during 4 h after a probe meal. Results: As compared to the habitual diet, the high-residue diet induced gas-related symptoms (flatulence score 4.9 vs. 1.2; p ≤ 0.0001), increased the daily number of anal gas evacuations (20.7 vs. 8.7; p < 0.0001), and impaired digestive well-being (1.0 vs. 3.4; p < 0.05). FMP consumption reduced flatulence sensation (by −1.7 [−1.9; −1.6]; p < 0.0001), reduced the number of daily evacuations (by −5.8 [−6.5; −5.1]; p < 0.0001), and improved digestive well-being (by +0.6 [+0.4; +0.7]; p < 0.05). FMP consumption did not affect the gas volume evacuated after a probe meal. Conclusion: In healthy subjects, consumption of a FMP containing B. lactis CNCM I-2494 and lactic acid bacteria improves the tolerance of a flatulogenic diet by subjective and objective criteria (sensations and number of anal gas evacuations, respectively).


2008 ◽  
Vol 105 (6) ◽  
pp. 1929-1938 ◽  
Author(s):  
M. Kahala ◽  
M. Mäki ◽  
A. Lehtovaara ◽  
J.-M. Tapanainen ◽  
R. Katiska ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Fortune Akabanda ◽  
James Owusu-Kwarteng ◽  
Kwaku Tano-Debrah ◽  
Charles Parkouda ◽  
Lene Jespersen

Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB) previously isolated and identified fromNunuproduct were assessedin vitrofor their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities). Following the determination of technological properties,Lactobacillus fermentum22-16,Lactobacillus plantarum8-2,Lactobacillus helveticus22-7, andLeuconostoc mesenteroides14-11 were used as single and combined starter cultures forNunufermentation. Starter culture fermentedNunusamples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging toLactobacillus helveticus, L. plantarum, L. fermentum, andLeu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (>100 to 150 μg/mL) was observed for 50%Leu. mesenteroides,40%L. fermentum,41%L. helveticus, 27%L. plantarum,and 10%Ent. faeciumspecies. In starter culture fermentedNunusamples, all amino acids determined were detected inNunufermented with single starters ofL. plantarumandL. helveticusand combined starter ofL. fermntumandL. helveticus. Consumer sensory analysis showed varying degrees of acceptability forNunufermented with the different starter cultures.


Author(s):  
S. Aforijiku ◽  
A. A. Onilude

The aim of this study was to isolate and phenotypically characterised lactic acid bacteria (LAB) from samples of raw (cow, goat) and traditional fermented milk product (nono).The assessed characteristics of LAB as indexed in Bergeys Manual of Determinative Bacteriology are cellular characteristic (Gram staining), growth at pH 4.5 and 9.6, growth in 5% NaCl, production of ammonia from arginine, tolerance to temperature 15 and 45oC, starch hydrolysis, and fermentation of sugars test. Fifty-five LAB were isolated and identified as Pediococcus acidilactici (15), Lactobacillus plantarum (29), Lactobacillus brevis (4), Lactobacillus casei (4), and Lactobacillus fermentum (3). Four species of the Lactobacillus isolated from nono samples were identified as Lactobacillus casei, Lactobacillus brevis, Lactobacillus plantarum and  Lactobacillus fermentum while Pediococcus acidilactici was isolated from raw cow and goat milk.  Lactobacillus plantarum was the dorminant organism with the highest frequency occurrence of 52.7% while Lactobacillus fermentum had the lowest (5.5%).  Lactobacillus species are normally found in fermented milk product which could be of great importance in food industry.


2018 ◽  
Vol 3 (1) ◽  
pp. 38
Author(s):  
Por: Melvys Jacqueline Vega Quintero

The lactic acid bacteria known by their initials (BAL) are microorganisms that in the absence of oxygen degrade carbohydrates like lactose (milk sugar), to synthesize lactic acid and energy, through a process known as lactic fermentation. In the dairy industry these microorganisms are used as lactic ferments or initiators of the lactic fermentation process for the manufacture of cheeses, yogurt, fermented milk and other products derived from milk. The type of bacterial species used as an initiator in the fermentation process is a determining factor in the nutritional quality and sensorial characteristics of the final product. The main objective of the investigation is to carry out an evaluation on the potential of sources and milk production in Panama, specifically in the Chiriquí Highlands. Regarding the scope of the research, its perspective is to continue research on the biological diversity of lactic acid bacteria present in dairy sources, for their isolation and use in the dairy industries. It is important to highlight the high production of cattle, sources and milk production in the Highlands, which represents a potential diversity of lactic acid bacteria.Keywords: Lactic acid bacteria, lactic fermentation, probiotic foods, genetic markers, phenotype.


Sign in / Sign up

Export Citation Format

Share Document