scholarly journals Evaluation of the Shear Bond Strength of Two Types of Adhesive Resin Cements to Zirconia after Surface Treatment using Silica Coating

2020 ◽  
Vol 1 (1) ◽  
pp. 23-30
Author(s):  
Ahmed Elsantawi ◽  
mosaad Elgabarouny ◽  
Diaa Saad ◽  
Amr Shebl
Author(s):  
Yeliz Hayran ◽  
Süha Kuşçu ◽  
Işıl SARIKAYA

Purpose: The aim of the study was to evaluate the shear bond strength (SBS) of different resin cements after zirconia surface treatments. Materials & Methods: A total of 60 zirconia discs (3x7mm) were prepared and divided into 3 main groups according to the surface treatments as control (C), sandblasting (SB), and tribochemical silica coating (TC). Main groups were divided into two subgroups according to two different resin cements were applied. No surface treatment was applied to the samples in C group. 50μm Al2O3 particles were applied to the samples in SB group for 10 s at a distance of 10 mm under 4 atm. TC group were tribochemically coated with alumina particles. Self-adhesive resin (ME) and multi-system dual-cure adhesive resin (NX3) was applied to the subgroups. After cementation, all samples were tested for SBS. SBS values were statistically analyzed by the Kruskal-Wallis and Mann-Whitney U tests. Results: Regardless of the cement type, SBS values of the surface treated samples were statistically different (p <0.001). Group SB was determined as the group with the highest SBS value. This group was followed by Group C and Group TC, respectively. The SBS values of the samples according to the resin cements and surface treatments were statistically significantly different (p<0.001). SBS values of the samples cemented with NX3 resin cement were found to be higher than the samples treated with ME resin cement. Conclusion: SB increased resin bond to zirconia. It is more advantageous to use multi-system dual cure adhesive cements in zirconia cementation.


2015 ◽  
Vol 19 (2) ◽  
pp. 101-112
Author(s):  
Emek Akkuş ◽  
Sebnem Begum Turker

SUMMARYObjectives: To compare the effects of airborne-particle abrasion (APA) and tribochemical silica coating (TSC) surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surfaceMaterials and Methods: Prefabricated Cercon and ZirkonZahn specimens treated with Al2O3 APA and TSC (Cojet, 3M ESPE) were luted on a dentin surface with Panavia F 2.0 (Kuraray, Japan) and Multilink Automix (Ivoclar Vivadent, Liechstein). The specimens were immersed in distilled water (37°C) for 30 days and then loaded in a universal test machine with a crosshead speed of 1 mm/min. Shear bond strength at failure was measured and recorded in N. The data were analysed by Mann-Whitney-U test (p<0.005) and by Chi-square test.Results: It’s demonstrated that the surface treatment affected the bond strength of all specimens. The mean bond strength values of the 2 zirconia systems were nearly the same. Shear bond strength of Cercon specimens treated with Cojet System, luted with Panavia 2.0 (242, 77 ± 53, 17 N were found to be significantly higher (p=0.04) than the other specimens. Fractures were observed at the interface between the ceramic surface and the cements or within the cements.Conclusion: There were no statically significant differences between zirconium systems (Cercon and Zirkonzahn). The specimens luted with Panavia F 2.0 showed higher shear bond strength values than the specimens luted with Multilink Automix. Panavia F 2.0 cement could be used with TSC, when the additive retention was needed.


2013 ◽  
Vol 38 (2) ◽  
pp. 186-196 ◽  
Author(s):  
Camila Sabatini ◽  
Manthan Patel ◽  
Eric D'Silva

SUMMARY Objective To evaluate the shear bond strength (SBS) of three self-adhesive resin cements and a resin-modified glass ionomer cement (RMGIC) to different prosthodontic substrates. Materials and Methods The substrates base metal, noble metal, zirconia, ceramic, and resin composite were used for bonding with different cements (n=12). Specimens were placed in a bonding jig, which was filled with one of four cements (RelyX Unicem, Multilink Automix, Maxcem Elite, and FujiCEM Automix). Both light-polymerizing (LP) and self-polymerizing (SP) setting reactions were tested. Shear bond strength was measured at 15 minutes and 24 hours in a testing device at a test speed of 1 mm/min and expressed in MPa. A Student t-test and a one-way analysis of variance (ANOVA) were used to evaluate differences between setting reactions, between testing times, and among cements irrespective of other factors. Generalized linear regression model and Tukey tests were used for multifactorial analysis. Results Significantly higher mean SBS were demonstrated for LP mode relative to SP mode (p&lt;0.001) and for 24 hours relative to 15 minutes (p&lt;0.001). Multifactorial analysis revealed that all factors (cement, substrate, and setting reaction) and all their interactions had a significant effect on the bond strength (p&lt;0.001). Resin showed significantly higher SBS than other substrates when bonded to RelyX Unicem and Multilink Automix in LP mode (p&lt;0.05). Overall, FujiCEM demonstrated significantly lower SBS than the three self-adhesive resin cements (p&lt;0.05). Conclusions Overall, higher bond strengths were demonstrated for LP relative to SP mode, 24 hours relative to 15 minutes and self-adhesive resin cements compared to the RMGICs. Bond strengths also varied depending on the substrate, indicating that selection of luting cement should be partially dictated by the substrate and the setting reaction.


2014 ◽  
Vol 111 (5) ◽  
pp. 411-415 ◽  
Author(s):  
Susan Hattar ◽  
Muhanad Hatamleh ◽  
Ameen Khraisat ◽  
Mohammad Al-Rabab'ah

2020 ◽  
Vol 22 (2) ◽  
Author(s):  
Andrzej Małysa ◽  
Joanna Weżgowiec ◽  
Dariusz Danel ◽  
Klauss Boening ◽  
Katarzyna Walczak ◽  
...  

Purpose: The aim of the study was to evaluate the shear bond strength of CAD/CAM ceramics to dentin after cementation with conventional or self-adhesive resin cements. Methods: Three self-adhesive, self-etching cements (Panavia SA, RelyX U200, Maxcem Elite), and one conventional cement (Panavia V5), were selected to lute three CAD/CAM ceramics (IPS Empress CAD, IPS e.max CAD, IPS e.max ZirCAD) onto the dentin. The bond strength was evaluated using a shear strength test according to the PN-EN ISO 29022:2013-10. Evaluation of the differences was performed using the Statistica software. Failure modes were analyzed using a light microscope. Results: All the studied cements differed (regardless of the ceramic type) in the bond strength. The highest bond strength was observed in Panavia V5, lower – in RelyX U200 and Panavia SA, and the lowest – in Maxcem. For IPS e.max ZirCAD, it was observed that compared to Panavia V5, the other cements were characterized by a significantly higher bond strength. For the IPS Empress CAD and the IPS e.max CAD, Panavia V5 displayed the highest bond strength. For all the studied self-adhesive cements, the failure of adhesion between the cement and dentin was predominant mode. Conclusions: Significant differences were found in the shear bond strengths of the CAD/CAM ceramics luted to dentin using tested self-adhesive and conventional cements. The bond strength depended on the combination of ceramic and cement. The IPS e.max ZirCAD had the highest bond strength to dentin after cementation with RelyX U200, while the IPS Empress CAD and IPS e.max CAD – with Panavia V5.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3321 ◽  
Author(s):  
Dae-Sung Kim ◽  
Jong-Ju Ahn ◽  
Eun-Bin Bae ◽  
Gyoo-Cheon Kim ◽  
Chang-Mo Jeong ◽  
...  

The purpose of this study was to evaluate the effect of non-thermal atmospheric pressure plasma (NTP) on shear bond strength (SBS) between yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and self-adhesive resin cement. For this study, surface energy (SE) was calculated with cube-shaped Y-TZP specimens, and SBS was measured on disc-shaped Y-TZP specimens bonded with G-CEM LinkAce or RelyX U200 resin cylinder. The Y-TZP specimens were classified into four groups according to the surface treatment as follows: Control (no surface treatment), NTP, Sb (Sandblasting), and Sb + NTP. The results showed that the SE was significantly higher in the NTP group than in the Control group (p < 0.05). For the SBS test, in non-thermocycling, the NTP group of both self-adhesive resin cements showed significantly higher SBS than the Control group (p < 0.05). However, regardless of the cement type in thermocycling, there was no significant increase in the SBS between the Control and NTP groups. Comparing the two cements, regardless of thermocycling, the NTP group of G-CEM LinkAce showed significantly higher SBS than that of RelyX U200 (p < 0.05). Our study suggests that NTP increases the SE. Furthermore, NTP increases the initial SBS, which is higher when using G-CEM LinkAce than when using RelyX U200.


Sign in / Sign up

Export Citation Format

Share Document