Histological Study on the Effect of Human Umbilical Cord Mesenchymal Stem Cells Versus their Microvesicles in the Repairing of Acute Kidney Injury Following Ischemia Reperfusion in Adult Male Albino Rats

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
eman sadek ◽  
Safinaz Salah El Din Sayed ◽  
Hala El Sherif ◽  
Heba Saied
2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Yan Mi

Abstract Background and Aims Acute kidney injury( AKI) is one of the most common complications of decompensated cirrhosis, and it primarily presents as a sharp decrease in glomerular filtration rate, rapid increase in serum creatinine( SCr) and urea nitrogen. And the search for specific and safe treatment has been a research hot spot in recent years. In this article, the effect of human umbilical cord mesenchymal stem cells on carbon tetrachloride (CCl4)-induced liver fibrosis (HF) in rats with acute kidney injury and the possible mechanism are investigated. Method Human umbilical cord blood mesenchymal stem cells were sub-cultured by adherent method, and the cells were identified by morphological observation, cell phenotypic analysis and multi-directional differentiation potential analysis methods. WASTA rats were randomly divided into control group, cirrhosis model group and treatment group, with 10 rats in each group. Model group and treatment group were injected with CCl4-olive oil (1:1) solution 3 mL·kg -1, and the control group was given the same amount of olive oil for intervention, twice a week for 8 weeks. Rats in treatment group were administrated wth Human umbilical cord mesenchymal stem cells (2 × 109 /L) via the tail vein at the 5th week after injection of CCl4-olive oil solution, but the other rats were injected with 0.9% normal saline, once a week for 6 weeks. After the intervention, Serum, kidneys and 24 hours urine of rats in each group were collected, which were applied for a detection of serum creatinine and urea nitrogen, malondialdehyde (MDA), NO content and superoxide dismutase (SOD), as well as renal pathological examination. Results 1.In vitro, umbilical cord blood mesenchymal stem cells was passaged to the third generation, and the morphology was uniform and spiraled. Phenotypic analysis showed that the positive rates of stem cell markers CD29, CD44 and CD105 were all greater than 95%, the positive rate of HLA-DR (graft-versus-host disease-associated factor) less than 10%, and the positive rate of CD34 and CD45 lower than 20% (Figure 1). 2. Compared with the cirrhotic model group, MDA content of serum and kidney in model group significantly decreased under the effect of mesenchymal stem cell (p <0.01) (Table 1). 3. The normal group had normal liver tissue structure, ordered liver cells, no hepatic edema, and no lesions. In the model group, large-area lesions, including edema of liver cells, rupture of cell membranes, and infiltration of inflammatory cells, had appeared. Compared with the model group, Hepatocellular necrosis, edema, and inflammatory cell infiltration were significantly improved after transplanting Human umbilical cord mesenchymal stem cells (Figure 2). 4.In the model group, the rat renal tubules disappeared and the lumen was disordered. After injection of Human umbilical cord mesenchymal stem cells, renal tubular and renal interstitial damage is improved and the thickening of glomerular basement membrane is reduced (Figure 3). Conclusion In CCl4-induced liver cirrhosis model rats, human umbilical cord mesenchymal stem cells can protect the kidney by reducing free radicals and cellular lipid peroxidation in vivo.


2020 ◽  
Author(s):  
song zhou ◽  
Yu-ming Qiao ◽  
Yong-guang Liu ◽  
Ding Liu ◽  
Jian-min Hu ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) represent a promising treatment option for acute kidney injury (AKI).The main drawbacks of MSC therapy including the lack of specific homing following systemic infusion and early death of the cells in the inflammatory microenvironment, directly affect the therapeutic efficacy of MSCs. Erythropoietin (EPO)-preconditioning promotes the therapeutic effect of the MSCs, although the underlying mechanism remains unknown. In this study, we sought to investigate the efficacy and mechanism of EPO on bone marrow mesenchymal stem cells (BMSCs) for the treatment of AKI.Results We found that incubation of BMSCs with ischemia/reperfusion(I/R)-induced AKI kidney homogenate supernatant (KHS) caused apoptosis in the BMSCs, which was decreased following EPO pretreatment indicating that EPO protected the cells from apoptosis. Further, we found that EPO upregulated SIRT1 and Bcl-2 expression, and downregulated p53 expression. The EPO-mediated anti-apoptotic mechanism in pretreated BMSCs may be mediated though the SIRT1 pathway. In a rat AKI model, our data showed that 24 h following intravenous infusion, GFP-BMSCs were predominantly in the lungs. However, EPO pretreatment reduced the lung entrapment of BMSCs, and increased the distribution of the BMSCs to the target organs. AKI rats infused with EPO-BMSCs had significantly lower levels of serum IL-1β and TNF-a and significantly higher level of IL-10 compared to rats infused with BMSCs. The administration of EPO-BMSCs after reperfusion was more effective in reducing serum creatinine, blood urea nitrogen, and pathological scores in the I/R-AKI rats than BMSCs.Conclusions Our data suggest that EPO pretreatment enhances the efficacy of BMSCs in improving renal function and pathological presentation in I/R-AKI rats.


Sign in / Sign up

Export Citation Format

Share Document