scholarly journals The Effect Of Culture System On Embryonic Development and Aneuploidy Rate For Icsi Cases

2021 ◽  
Vol 85 (2) ◽  
pp. 3960-3966
Author(s):  
Yasmine Azouz ◽  
Mohamed Abbas Eid ◽  
Mohamed Refaat Shehata ◽  
Heba Ali Abd EL-Rahman
1987 ◽  
Vol 105 (1) ◽  
pp. 599-608 ◽  
Author(s):  
E Aufderheide ◽  
R Chiquet-Ehrismann ◽  
P Ekblom

Tenascin, a mesenchymal extracellular matrix glycoprotein, has been implicated in epithelial-mesenchymal interactions during fetal development (Chiquet-Ehrismann, R., E. J. Mackie, C. A. Pearson, T. Sakakura, 1986, Cell, 47:131-139). We have now investigated the expression of tenascin during embryonic development of the mouse kidney. In this system, mesenchymal cells convert into epithelial cells as a result of a tissue interaction. By immunofluorescence, tenascin could not be found in the mesenchyme until kidney tubule epithelial began to form. It then became detectable around condensates and s-shaped bodies, the early stages of tubulogenesis. In an in vitro culture system, tenascin expression by the mesenchyme is tightly coupled to the de novo formation of epithelial, and does not occur if tubulogenesis is suppressed. The results strongly suggest that the formation of the new epithelium stimulates the expression of tenascin in the nearby mesenchyme. During postnatal development, the expression of tenascin decreases and the spatial distribution changes. In kidneys from adult mice, no tenascin can be found in the cortex, but interspersed patches of staining are visible in the medullary stroma. The results strongly support the view that tenascin is involved in epithelial-mesenchymal interactions. It could therefore be crucial for embryonic development.


2007 ◽  
Vol 19 (1) ◽  
pp. 258
Author(s):  
B. Agung ◽  
T. Otoi ◽  
D. Fuchimoto ◽  
S. Senbon ◽  
A. Onishi ◽  
...  

When used as a solo maturation medium for oocytes, porcine follicular fluid (pFF) promoted male pronucleus formation (MPF) of oocytes after in vitro maturation (IVM), using a static system, and in vitro fertilization (IVF) in pigs (Naito et al. 1988 Gamete Res. 21, 289–295). However, the developmental competence of oocytes matured in pFF after IVM/IVF has not been reported. This study was conducted to assess the ability of pFF as a maturation medium to support IVM/IVF of porcine oocytes and their subsequent in vitro development. pFF, including cumulus–oocyte complexes (COCs), was aspirated from follicles (2–5 mm in diameter) of prepubertal crossbred gilt ovaries, and large clusters of follicular cells (FC) were removed from pFF by filtration through 212 �m of mesh. All of the COCs in filtered pFF were collected, and COCs with compact cumulus cells were selected for IVM. Also, small clusters of FC were collected by centrifugation of the filtered pFF, and pFF without any cells was prepared by centrifugation and used as a maturation medium (MpFF) after supplementation with FSH and antibiotics. COCs were transferred to 3.5 mL (in a 15-mL test tube) of MpFF with FC (5.2 � 106 cells mL-1) and cultured for 44–48 h at 38.5�C in 5% O2 and 5% CO2 using the rotating culture system. As a control group, COCs were cultured in 2 mL of MpFF without FC in a 35-mm Petri dish by the standard static culture system. After maturation, culture oocytes were co-incubated (IVF) for 5 h with frozen–thawed sperm in vitro, as reported previously (Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041), and then some of them were fixed 10 h after IVF to assess the fertilization status; the rest of them were cultured in PZM (Yoshioka et al. 2002 Biol. Reprod. 60, 112–119) for 7 days to assess their early embryonic development. All of the data were analyzed by ANOVA. Oocytes cultured with FC in the rotating system (R group) showed significantly higher sperm penetration (71.0%), MPF formation (70.5%), and normal fertilization (monospermic fertilization with female and male pronuclei; 31.5%) rates than those in the control group (56.0%, 56.9%, and 17.6%, respectively; P < 0.05). Also, the R group showed significantly higher rates of 8-cell embryos at 2 days after IVF and blastocyst formation at 7 days after IVF than those of the control group (17.2% vs. 8.3% and 10.9% vs. 4.5%, respectively; P < 0.05). These results indicate that porcine oocytes matured in pFF supplemented with FC using the rotating system have the ability to be penetrated by sperm and form MPF, and to develop to the blastocyst stage at higher rates, than oocytes cultured in the standard static maturation culture system. In conclusion, the pFF can be a sole and simple maturation culture medium useful for the in vitro production of blastocysts in pigs.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Jun Tan ◽  
Yang Zou ◽  
Zhi-Hui Huang ◽  
Zhi-Qin Zhang ◽  
Li-Ping Wu ◽  
...  

Abstract Background Although in vitro culture system has been optimized in the past few decades, the problem of few or no high quality embryos has been still not completely solved. Accordingly, fully understanding the regulatory mechanism of pre-implantation embryonic development would be beneficial to further optimize the in vitro embryo culture system. Recent studies have found the expression of c-kit in mouse embryo and its promotion effects on mouse embryonic development. However, it is unclear the expression, the role and the related molecular regulatory mechanism of c-kit in human pre-implantation embryo development. Therefore, the present study is to determine whether c-kit is expressed in human pre-implantation embryos, and to investigate the possible regulatory mechanism of c-kit signaling in the process of embryonic development. Methods The present study includes human immature oocytes and three pronucleus (3PN) embryos collected from 768 women (28–32 ages) undergoing IVF, and normal 2PN embryos collected from ICR mice. Samples were distributed randomly into three different experimental groups: SCF group: G-1™ (medium for culture of embryos from the pro-nucleate stage to day 3) or G-2™ (medium for culture of embryos from day3 to blastocyst stage) + HSA (Human serum album) solution + rhSCF; SCF + imanitib (c-kit inhibitor) group: G-1™ or G-2™ + HSA solution + rhSCF + imanitib; SCF + U0126 (MEK/ERK inhibitor) group: G-1™ or G-2™ + HSA solution + rhSCF + U0126; Control group: G-1™ or G-2™ + HSA solution + PBS; The rate of good quality embryos at day 3, blastulation at day 6 and good quality blastulation at day 6 were analysis. RT-PCR, western blot and immunofluorescence staining were applied to detect the target genes and proteins in samples collected from human or mice, respectively. Results c-kit was expressed ubiquitously in all human immature oocytes, 3PN embryos and 3PN blastocysts. In the experiment of human 3PN embryos, compared with other groups, SCF group showed obviously higher rate of good quality at day 3, better rate of blastocyst formation at day 6 and higher rate of good quality blastocyst formation at day 6. Furthermore, we observed a higher ETV5 expression in SCF group than that in other groups. Similar results were also found in animal experiment. Interestingly, we also found a higher phosphorylation level of MEK/ERK signal molecule in mice embryos from SCF group than those from other groups. Moreover, inhibition of MEK/ERK signaling would remarkably impeded the mice embryonic development, which might be due to the reduced ETV5 expression. Conclusions The present study firstly revealed that c-kit signaling might promote the human pre-implantation embryonic development and blastocyst formation by up-regulating the expression of ETV5 via MEK/ERK pathway. Our findings provide a new idea for optimizing the in vitro embryo culture condition during ART program, which is beneficial to obtain high quality embryos for infertile patients.


Sign in / Sign up

Export Citation Format

Share Document