scholarly journals Production, Purification and Biochemical Characterization of Cyclodextrin Glucanotrans-ferase from Bacillus cereus N1

2009 ◽  
Vol 44 (1) ◽  
pp. 87-99
1976 ◽  
Vol 22 (7) ◽  
pp. 1007-1012 ◽  
Author(s):  
Susanne M. Pearce

Previous studies on this cortexless mutant of Bacillus cereus var. alesti indicated that the forespore membrane was the site of the biochemical lesion. This hypothesis is supported by the results presented here: fatty acid composition of sporulating cells of the mutant is altered, while in vegetative cells it is comparable to the parent; soluble precursors of peptidoglycan synthesis are accumulated in the mutant, at the time of cortex formation; homogenates of the mutant prepared at the time of cortex formation are unable to incorporate tritiated diaminopimelic acid into peptidoglycan, while homogenates of cells forming germ cell wall do so to an extent comparable to that of the parent; lipid-linked intermediates are formed by the mutant as in the parent. Apparently the mutant is unable either to transfer disaccharide penta-peptide units from the carrier lipid to the growing peptidoglycan acceptor, or to transport lipid-linked intermediates across the forespore membrane.


1978 ◽  
Vol 41 (6) ◽  
pp. 450-454 ◽  
Author(s):  
D. A. SCHIEMANN

One hundred sixty-five samples of various foods were collected from 24 different Chinese take-out restaurants for bacteriological examination which included enumeration of Bacillus cereus by three media, MYP, KG and blood agars. Blood agar was less selective but no quantitative differences in recovery were apparent. Twenty-eight samples (15%) yielded B. cereus in excess of 100 per gram, and 20 of these were fried rice (33% positive), which also showed the poorest overall bacteriological quality. Biochemical characterization of 232 isolates of B. cereus showed 96% or more positive for catalase, nitrate reduction, beta-haemolysis, subterminal-ellipsoidal spores, aerobic and anaerobic utilization of glucose, Voges-Proskauer, fermentation of glycerol, gelatin hydrolysis, and alkaline peptonization of litmus milk; and a negative reaction in mannitol. Variable results were obtained for motility, fermentation of sucrose and salicin, and starch hydrolysis. Thirty-three isolates were susceptible to 12 of 19 antibiotics tested, and resistant to colistin. Six (18%) were susceptible to penicillin.


Author(s):  
Estefanía Morales-Ruiz ◽  
Ricardo Priego-Rivera ◽  
Alejandro Miguel Figueroa-López ◽  
Jesús Eduardo Cazares-Álvarez ◽  
Ignacio E Maldonado-Mendoza

Abstract Bacterial chitinases are a subject of intense scientific research due to their biotechnological applications, particularly their use as biological pesticides against phytopathogenic fungi as a green alternative to avoid the use of synthetic pesticides. Bacillus cereus sensu lato B25 is a rhizospheric bacterium that is a proven antagonist of Fusarium verticillioides, a major fungal pathogen of maize. This bacterium produces two chitinases that degrade the fungal cell wall and inhibit its growth. In this work, we used a heterologous expression system to purify both enzymes to investigate their biochemical traits in terms of Km, Vmax, optimal pH and temperature. ChiA and ChiB work as exochitinases, but ChiB exhibited a dual substrate activity and it is also an endochitinase. In this work, the direct addition of these chitinases inhibited fungal conidial germination and therefore they may play a major role in the antagonism against F. verticillioides.


2016 ◽  
Vol 474 (3) ◽  
pp. 522-527 ◽  
Author(s):  
Sun Cheol Park ◽  
Pyeung-Hyeun Kim ◽  
Geun-Shik Lee ◽  
Seung Goo Kang ◽  
Hyun-Jeong Ko ◽  
...  

Author(s):  
J. H. Resau ◽  
N. Howell ◽  
S. H. Chang

Spinach grown in Texas developed “yellow spotting” on the peripheral portions of the leaves. The exact cause of the discoloration could not be determined as there was no evidence of viral or parasitic infestation of the plants and biochemical characterization of the plants did not indicate any significant differences between the yellow and green leaf portions of the spinach. The present study was undertaken using electron microscopy (EM) to determine if a micro-nutrient deficiency was the cause for the discoloration.Green leaf spinach was collected from the field and sent by express mail to the EM laboratory. The yellow and equivalent green portions of the leaves were isolated and dried in a Denton evaporator at 10-5 Torr for 24 hrs. The leaf specimens were then examined using a JEOL 100 CX analytical microscope. TEM specimens were prepared according to the methods of Trump et al.


2014 ◽  
Vol 3 (3) ◽  
pp. 218-225
Author(s):  
R. G. Somkuwar ◽  
M. A. Bhange ◽  
A. K. Upadhyay ◽  
S. D. Ramteke

SauvignonBlanc wine grape was characterized for their various morphological, physiological and biochemical parameters grafted on different rootstocks. Significant differences were recorded for all the parameters studied. The studies on vegetative parameters revealed that the rootstock influences the vegetative growth thereby increasing the photosynthetic activities of a vine. The highest photosynthesis rate was recorded in 140-Ru grafted vine followed by Fercal whereas the lowest in Salt Creek rootstock grafted vines.The rootstock influenced the changes in biochemical constituents in the grafted vine thereby helping the plant to store enough food material. Significant differences were recorded for total carbohydrates, proteins, total phenols and reducing sugar. The vines grafted on1103-Pshowed highest carbohydrates and starch followed by 140-Ru,while the least amount of carbohydrates were recorded in 110-R and Salt Creek grafted vines respectively.Among the different rootstock graft combinations, Fercal showed highest amount of reducing sugar, proteins and phenols, followed by 1103-P and SO4, however, the lowest amount of reducing sugar, proteins and phenols were recorded with 110-R grafted vines.The vines grafted on different rootstocks showed changes in nutrient uptake. Considering this, the physico-biochemical characterization of grafted vine may help to identify particularrootstocks combination that could influence a desired trait in commercial wine grape varieties after grafting.


Sign in / Sign up

Export Citation Format

Share Document