scholarly journals The Effect of Topically Applied Hyaluronic Acid on Skin Wound Healing in Rabbits

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Ammar Rajab ◽  
Ghada Taqa ◽  
Wael T. Al-Wattar
2020 ◽  
Vol 3 (5) ◽  
pp. 3039-3048
Author(s):  
Anqi Chen ◽  
Wen Huang ◽  
Liang Wu ◽  
Ying An ◽  
Tengxiao Xuan ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1214 ◽  
Author(s):  
Huang ◽  
Huang ◽  
Lew ◽  
Fan ◽  
Chang ◽  
...  

In this study, we prepared low-molecular-weight hyaluronic acid (LMWHA) powder by γ-irradiation. The chemical and physical properties of γ-irradiated LMWHA and the in vitro cellular growth experiments with γ-irradiated LMWHA were analyzed. Then, hyaluronic acid exposed to 20 kGy of γ-irradiation was used to fabricate a carboxymethyl cellulose (CMC)/LMWHA fabric for wound dressing. Our results showed that γ-irradiated LMWHA demonstrated a significant alteration in carbon–oxygen double bonding and can be detected using nuclear magnetic resonance and ultraviolet (UV)-visible (Vis) spectra. The γ-irradiated LMWHA exhibited strain rate-dependent Newton/non-Newton fluid biphasic viscosity. The viability of L929 skin fibroblasts improved upon co-culture with γ-irradiated LMWHA. In the in vivo animal experiments, skin wounds covered with dressings prepared by γ-irradiation revealed acceleration of wound healing after two days of healing. The results suggest that γ-irradiated LMWHA could be a potential source for the promotion of skin wound healing.


1996 ◽  
Vol 35 (8) ◽  
pp. 539-544 ◽  
Author(s):  
WORAPHONG MANUSKIATTI ◽  
HOWARD I. MAIBACH

2020 ◽  
Author(s):  
Cristina Galocha León ◽  
Beatriz Clares Naveros ◽  
Noelia Pérez González ◽  
Juan Antonio Marchal Corrales ◽  
Cristina Antich Acedo ◽  
...  

2018 ◽  
Vol 6 (7) ◽  
pp. 1962-1975 ◽  
Author(s):  
Maria P. Sousa ◽  
Ana I. Neto ◽  
Tiago R. Correia ◽  
Sónia P. Miguel ◽  
Michiya Matsusaki ◽  
...  

Multilayered membranes composed of chitosan, alginate and dopamine modified-hyaluronic acid are found to be potential adhesive patches for skin wound healing.


2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 457
Author(s):  
Andreu Blanquer ◽  
Jana Musilkova ◽  
Elena Filova ◽  
Johanka Taborska ◽  
Eduard Brynda ◽  
...  

Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes.


Sign in / Sign up

Export Citation Format

Share Document