scholarly journals LOSSES IN GRAIN YIELD OF SOME RICE CULTIVARS DUE TO BLAST INFECTION AT DIFFERENT GROWTH STAGES

2009 ◽  
Vol 34 (4) ◽  
pp. 3883-3896
Author(s):  
M. Nazim ◽  
M. Sehly ◽  
R. EL-Shafey
Plant Disease ◽  
2019 ◽  
Vol 103 (1) ◽  
pp. 132-136 ◽  
Author(s):  
Xinglong Chen ◽  
Yulin Jia ◽  
Bo Ming Wu

Rice blast, caused by the fungus Magnaporthe oryzae, is the most damaging disease for rice worldwide. However, the reactions of rice to M. oryzae at different growth stages are largely unknown. In the present study, two temperate japonica rice cultivars, M-202 and Nipponbare, were inoculated synchronously at different vegetative growth stages, V1 to V10. Plants of M-202 at each stage from V1 to reproductive stage R8 were inoculated with M. oryzae race (isolate) IB-49 (ZN61) under controlled conditions. Disease reactions were recorded 7 days postinoculation by measuring the percentage of diseased area of all leaves, excluding the youngest leaf. The results showed that the plants were significantly susceptible at the V1 to V4 stages with a disease severity of 26.7 to 46.8% and disease index of 18.62 to 37.76 for M-202. At the V1 to V2 stages, the plants were significantly susceptible with a disease a severity of 28.6 to 39.3% and disease index of 23.65 to 29.82 for Nipponbare. Similar results were observed when plants of M-202 were inoculated at each growth stage with a disease severity of 29.7 to 60.6% and disease index of 21.93 to 59.25 from V1 to V4. Susceptibility decreased after the V5 stage (severity 4.6% and index 2.17) and became completely resistant at the V9 to V10 stages and after the reproductive stages, suggesting that plants have enhanced disease resistance at later growth stages. These findings are useful for managing rice blast disease in commercial rice production worldwide.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 106 ◽  
Author(s):  
Ke Zhang ◽  
Xiaojun Liu ◽  
Syed Tahir Ata-Ul-Karim ◽  
Jingshan Lu ◽  
Brian Krienke ◽  
...  

Accurate estimation of the nitrogen (N) spatial distribution of rice (Oryza sativa L.) is imperative when it is sought to maintain regional and global carbon balances. We systematically evaluated the normalized differences of the soil and plant analysis development (SPAD) index (the normalized difference SPAD indexes, NDSIs) between the upper (the first and second leaves from the top), and lower (the third and fourth leaves from the top) leaves of Japonica rice. Four multi-location, multi-N rate (0–390 kg ha−1) field experiments were conducted using seven Japonica rice cultivars (9915, 27123, Wuxiangjing14, Wunyunjing19, Wunyunjing24, Liangyou9, and Yongyou8). Growth analyses were performed at different growth stages ranging from tillering (TI) to the ripening period (RP). We measured leaf N concentration (LNC), the N nutrition index (NNI), the NDSI, and rice grain yield at maturity. The relationships among the NDSI, LNC, and NNI at different growth stages showed that the NDSI values of the third and fourth fully expanded leaves more reliably reflected the N nutritional status than those of the first and second fully expanded leaves (LNC: NDSIL3,4, R2 > 0.81; NDSIothers, 0.77 > R2 > 0.06; NNI: NDSIL3,4, R2 > 0.83; NDSIothers, 0.76 > R2 > 0.07; all p < 0.01). Two new diagnostic models based on the NDSIL3,4 (from the tillering to the ripening period) can be used for effective diagnosis of the LNC and NNI, which exhibited reasonable distributions of residuals (LNC: relative root mean square error (RRMSE) = 0.0683; NNI: RRMSE = 0.0688; p < 0.01). The relationship between grain yield, predicted yield, and NDSIL3,4 were established during critical growth stages (from the stem elongation to the heading stages; R2 = 0.53, p < 0.01, RRMSE = 0.106). An NDSIL3,4 high-yield change curve was drawn to describe critical NDSIL3,4 values for a high-yield target (10.28 t ha−1). Furthermore, dynamic-critical curve models based on the NDSIL3,4 allowed a precise description of rice N status, facilitating the timing of fertilization decisions to optimize yields in the intensive rice cropping systems of eastern China.


2002 ◽  
Vol 73 (2-3) ◽  
pp. 67-79 ◽  
Author(s):  
Hiroyuki Shimono ◽  
Toshihiro Hasegawa ◽  
Kazuto Iwama

2009 ◽  
Vol 33 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Amanullah ◽  
Muhammad Yasir ◽  
Shad Khan Khalil ◽  
Muhammad Tariq Jan ◽  
Amir Zaman Khan

1980 ◽  
Vol 112 (8) ◽  
pp. 759-764 ◽  
Author(s):  
S. A. Ba-Angood ◽  
R. K. Stewart

AbstractArtificial infestations of cereal aphids in caged plants were made at different growth stages of barley in the field in 1978 and 1979. Forty, 80, 160, and 200 aphids/tiller reduced grain yield significantly (P < 0.01) when introduced into caged plants at flowering and milky stages for 2 weeks. Only the 150 and 200 aphids/tiller-treatments gave significant reductions in yield when introduction was at the mealy ripe stage. Twenty aphids/tiller gave a significant reduction in yield only when they were introduced at the beginning of ear emergence and flowering, but not at the milky ripe stage. Significant reduction in percentage protein was obtained only when 160 and 200 aphids/tiller were introduced at flowering and milky ripe stages. The economic injury and threshold levels were calculated as 10–18 and 8–16 aphids/tiller, respectively, depending on rate of increase of aphids, costs of chemical control, and the value of the crop in 1978 and 1979.


Sign in / Sign up

Export Citation Format

Share Document