scholarly journals Development of Chlorophyll-Meter-Index-Based Dynamic Models for Evaluation of High-Yield Japonica Rice Production in Yangtze River Reaches

Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 106 ◽  
Author(s):  
Ke Zhang ◽  
Xiaojun Liu ◽  
Syed Tahir Ata-Ul-Karim ◽  
Jingshan Lu ◽  
Brian Krienke ◽  
...  

Accurate estimation of the nitrogen (N) spatial distribution of rice (Oryza sativa L.) is imperative when it is sought to maintain regional and global carbon balances. We systematically evaluated the normalized differences of the soil and plant analysis development (SPAD) index (the normalized difference SPAD indexes, NDSIs) between the upper (the first and second leaves from the top), and lower (the third and fourth leaves from the top) leaves of Japonica rice. Four multi-location, multi-N rate (0–390 kg ha−1) field experiments were conducted using seven Japonica rice cultivars (9915, 27123, Wuxiangjing14, Wunyunjing19, Wunyunjing24, Liangyou9, and Yongyou8). Growth analyses were performed at different growth stages ranging from tillering (TI) to the ripening period (RP). We measured leaf N concentration (LNC), the N nutrition index (NNI), the NDSI, and rice grain yield at maturity. The relationships among the NDSI, LNC, and NNI at different growth stages showed that the NDSI values of the third and fourth fully expanded leaves more reliably reflected the N nutritional status than those of the first and second fully expanded leaves (LNC: NDSIL3,4, R2 > 0.81; NDSIothers, 0.77 > R2 > 0.06; NNI: NDSIL3,4, R2 > 0.83; NDSIothers, 0.76 > R2 > 0.07; all p < 0.01). Two new diagnostic models based on the NDSIL3,4 (from the tillering to the ripening period) can be used for effective diagnosis of the LNC and NNI, which exhibited reasonable distributions of residuals (LNC: relative root mean square error (RRMSE) = 0.0683; NNI: RRMSE = 0.0688; p < 0.01). The relationship between grain yield, predicted yield, and NDSIL3,4 were established during critical growth stages (from the stem elongation to the heading stages; R2 = 0.53, p < 0.01, RRMSE = 0.106). An NDSIL3,4 high-yield change curve was drawn to describe critical NDSIL3,4 values for a high-yield target (10.28 t ha−1). Furthermore, dynamic-critical curve models based on the NDSIL3,4 allowed a precise description of rice N status, facilitating the timing of fertilization decisions to optimize yields in the intensive rice cropping systems of eastern China.

1992 ◽  
Vol 118 (1) ◽  
pp. 71-75 ◽  
Author(s):  
D. Singh ◽  
M. S. Brar ◽  
A. S. Brar

SUMMARYPotassium concentrations in various plant parts of cotton (Gossypium hirsutum L.) at different growth stages were determined in field experiments in Punjab, India, in 1987, for plots fertilized at sowing and flowering, and these were compared with the final seed cotton yield. The optimum time of sampling for predicting relative yield depends on the time of K fertilizer application: if applied at sowing, plants should be sampled before the peak flowering stage (70 days after sowing, DAS); if applied at flowering (50 DAS), plants should be sampled 90–115 DAS. Critical K concentrations (% K. in dry matter) in the plant parts measured at different growth stages were 3·26 in the petioles of the third leaf from the top at flower initiation; 0·69 and 0·90 in blades and petioles of a lower leaf (first or second healthy leaf from the bottom of plant) respectively, and 2·60 in the petioles of the third leaf (young, fully mature leaf from the top of the plant) at peak flowering stage; 0·85 in blades of the third leaf, 0·53 and 0·50 in blades and petioles of a lower leaf, respectively, at the boll development stage; 0·70 and 2·85 in blades and petioles of the third leaf and 0·68 in petioles of a lower leaf at boll opening stage.


2018 ◽  
Vol 10 (8) ◽  
pp. 1249 ◽  
Author(s):  
Kensuke Kawamura ◽  
Hiroshi Ikeura ◽  
Sengthong Phongchanmaixay ◽  
Phanthasin Khanthavong

Canopy hyperspectral (HS) sensing is a promising tool for estimating rice (Oryza sativa L.) yield. However, the timing of HS measurements is crucial for assessing grain yield prior to harvest because rice growth stages strongly influence the sensitivity to different wavelengths and the evaluation performance. To clarify the optimum growth stage for HS sensing-based yield assessments, the grain yield of paddy fields during the reproductive phase to the ripening phase was evaluated from field HS data in conjunction with iterative stepwise elimination partial least squares (ISE-PLS) regression. The field experiments involved three different transplanting dates (12 July, 26 July, and 9 August) in 2017 for six cultivars with three replicates (n = 3 × 6 × 3 = 54). Field HS measurements were performed on 2 October 2017, during the panicle initiation, booting, and ripening growth stages. The predictive accuracy of ISE-PLS was compared with that of the standard full-spectrum PLS (FS-PLS) via coefficient of determination (R2) values and root mean squared errors of cross-validation (RMSECV), and the robustness was evaluated by the residual predictive deviation (RPD). Compared with the FS-PLS models, the ISE-PLS models exhibited higher R2 values and lower RMSECV values for all data sets. Overall, the highest R2 values and the lowest RMSECV values were obtained from the ISE-PLS model at the booting stage (R2 = 0.873, RMSECV = 22.903); the RPD was >2.4. Selected HS wavebands in the ISE-PLS model were identified in the red-edge (710–740 nm) and near-infrared (830 nm) regions. Overall, these results suggest that the booting stage might be the best time for in-season rice grain assessment and that rice yield could be evaluated accurately from the HS sensing data via the ISE-PLS model.


2005 ◽  
Vol 19 (2) ◽  
pp. 476-480 ◽  
Author(s):  
Luis A. Avila ◽  
Scott A. Senseman ◽  
Garry N. McCauley ◽  
James M. Chandler ◽  
John H. O'Barr

Field experiments were conducted in 2002 and 2003 in Beaumont, TX, to evaluate the effect of flood timing on red rice control with imazethapyr applied at different cultivated rice growth stages. Treatments included flood establishment at 1, 7, 14, and 21 d after postemergence (POST) herbicide treatment (DAT). Imazethapyr was applied preemergence at 70 g ai/ha followed by 70 g/ ha POST when imidazolinone-tolerant rice cultivar ‘CL-161’ had three- to four-leaf stage (EPOST) or five-leaf stage (LPOST). Flood needed to be established within 14 DAT to achieve at least 95% red rice control when imazethapyr was applied EPOST. However, flood needed to be established within 7 DAT to provide at least 95% red rice control when imazethapyr was applied LPOST. Delaying the flood up to 21 DAT reduced rice grain yield for both application timings.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 584
Author(s):  
Omnia M. Elshayb ◽  
Khaled Y. Farroh ◽  
Heba E. Amin ◽  
Ayman M. Atta

Applications of metal oxide nanoparticles in the agriculture sector are being extensively included as the materials are considered superior. In the present work, zinc oxide nanoparticle (ZnO NPs), with a developing fertilizer, is applied in the fortification of rice grain yield and nutrient uptake enhancement. To evaluate the role of ZnO NP, two field experiments were conducted during the 2018 and 2019 seasons. ZnO NPs were small, nearly spherical, and their sizes equal to 31.4 nm, as proved via the dynamic light scattering technique. ZnO NPs were applied as a fertilizer in different concentrations, varying between 20 and 60 mg/L as a foliar spray. The mixture of ZnSO4 and ZnO NP40 ameliorated yield component and nutrients (N, K, and Zn) uptake was enhanced compared to traditional ZnSO4 treatment. Nevertheless, the uptake of the phosphorous element (P) was adversely affected by the treatment of ZnO NPs. Thus, treatment via utilizing ZnO NPs as a foliar with a very small amount (40 ppm) with of basal ZnSO4 led to a good improvement in agronomic and physiological features; eventually, higher yield and nutrient-enriched rice grain were obtained.


Weed Science ◽  
1985 ◽  
Vol 33 (5) ◽  
pp. 703-707 ◽  
Author(s):  
Amadou Diarra ◽  
Roy J. Smith ◽  
Ronald E. Talbert

Field experiments were conducted to investigate methods of controlling red rice (Oryza sativaL. ♯ ORYSA) in drill-seeded rice (O. sativa). Treatments included the rice cultivar ‘Mars', coated with calcium peroxide (CaO2) at 40% (w/w) and a crop protectant, R-33865 (O,O-diethyl-O-phenyl phosphorothioate) at 0.5 and 1% (v/w). Molinate (S-ethyl hexahydro-1H-azepine-1-carbothioate) at 6.7 kg ai/ha was applied preplant incorporated (ppi). The land was flooded (2.5 to 5 cm deep) after seeding with rice (100 kg/ha, 2.5 cm deep), and the water was maintained throughout the growing season. CaO2, with or without molinate, increased rice grain yield 50% and increased rice culm density fivefold above untreated rice. Molinate applied ppi controlled 96% of the red rice. Rice seed coated with only CaO2or with CaO2plus R-33865 at 0.5%, each combined with ppi molinate, produced 5690 and 6030 kg/ha of grain, respectively. These high yields were associated with red rice control by molinate and good stands of rice provided by O2supplied by CaO2. R-33865 applied to rice seed at 1% (v/w) injured rice by reducing rice culm densities 41%, compared with rice without protectant.


2019 ◽  
Vol 116 (32) ◽  
pp. 16121-16126 ◽  
Author(s):  
Ying Zhang ◽  
Yan Xiong ◽  
Renyi Liu ◽  
Hong-Wei Xue ◽  
Zhenbiao Yang

Grain size is a key factor for determining grain yield in crops and is a target trait for both domestication and breeding, yet the mechanisms underlying the regulation of grain size are largely unclear. Here we show that the grain size and yield of rice (Oryza sativa) is positively regulated by ROP GTPase (Rho-like GTPase from plants), a versatile molecular switch modulating plant growth, development, and responses to the environment. Overexpression of rice OsRac1ROP not only increases cell numbers, resulting in a larger spikelet hull, but also accelerates grain filling rate, causing greater grain width and weight. As a result, OsRac1 overexpression improves grain yield in O. sativa by nearly 16%. In contrast, down-regulation or deletion of OsRac1 causes the opposite effects. RNA-seq and cell cycle analyses suggest that OsRac1 promotes cell division. Interestingly, OsRac1 interacts with and regulates the phosphorylation level of OsMAPK6, which is known to regulate cell division and grain size in rice. Thus, our findings suggest OsRac1 modulates rice grain size and yield by influencing cell division. This study provides insights into the molecular mechanisms underlying the control of rice grain size and suggests that OsRac1 could serve as a potential target gene for breeding high-yield crops.


Plant Disease ◽  
2019 ◽  
Vol 103 (1) ◽  
pp. 132-136 ◽  
Author(s):  
Xinglong Chen ◽  
Yulin Jia ◽  
Bo Ming Wu

Rice blast, caused by the fungus Magnaporthe oryzae, is the most damaging disease for rice worldwide. However, the reactions of rice to M. oryzae at different growth stages are largely unknown. In the present study, two temperate japonica rice cultivars, M-202 and Nipponbare, were inoculated synchronously at different vegetative growth stages, V1 to V10. Plants of M-202 at each stage from V1 to reproductive stage R8 were inoculated with M. oryzae race (isolate) IB-49 (ZN61) under controlled conditions. Disease reactions were recorded 7 days postinoculation by measuring the percentage of diseased area of all leaves, excluding the youngest leaf. The results showed that the plants were significantly susceptible at the V1 to V4 stages with a disease severity of 26.7 to 46.8% and disease index of 18.62 to 37.76 for M-202. At the V1 to V2 stages, the plants were significantly susceptible with a disease a severity of 28.6 to 39.3% and disease index of 23.65 to 29.82 for Nipponbare. Similar results were observed when plants of M-202 were inoculated at each growth stage with a disease severity of 29.7 to 60.6% and disease index of 21.93 to 59.25 from V1 to V4. Susceptibility decreased after the V5 stage (severity 4.6% and index 2.17) and became completely resistant at the V9 to V10 stages and after the reproductive stages, suggesting that plants have enhanced disease resistance at later growth stages. These findings are useful for managing rice blast disease in commercial rice production worldwide.


2020 ◽  
Vol 126 (2) ◽  
pp. 315-322 ◽  
Author(s):  
Xiaohua Qi ◽  
Hirokazu Takahashi ◽  
Yasushi Kawasaki ◽  
Yuya Ohta ◽  
Masahide Isozaki ◽  
...  

Abstract Background and Aims Dutch tomato cultivars tend to have a greater yield than Japanese cultivars even if they are grown under the same conditions. Factors contributing to the increased yield of the Dutch cultivars were a greater light use efficiency and greater leaf photosynthetic rate. On the other hand, the relationship between tomato yields and anatomical traits is still unclear. The aim of this study is to identify the anatomical traits related to the difference in yield between Dutch and Japanese cultivars. Methods Anatomical properties were compared during different growth stages of Dutch and Japanese tomatoes. Hormone profiles and related gene expression in hypocotyls of Dutch and Japanese cultivars were compared in the hypocotyls of 3- and 4-week-old plants. Key results Dutch cultivars have a more developed secondary xylem than Japanese cultivars, which would allow for greater transport of water, mineral nutrients and phytohormones to the shoots. The areas and ratios of the xylem in the hypocotyls of 3- to 6-week-old plants were larger in the Dutch cultivars. In reciprocal grafts of the Japanese and Dutch cultivars, xylem development at the scion and rootstock depended on the scion cultivar, suggesting that some factors in the scion are responsible for the difference in xylem development. The cytokinin content, especially the level of N6-(Δ 2-isopentenyl) adenine (iP)-type cytokinin, was higher in the Dutch cultivars. This result was supported by the greater expression of Sl-IPT3 (a cytokinin biosynthesis gene) and Sl-RR16/17 (a cytokinin-responsive gene) in the Dutch cultivars. Conclusions These results suggest that iP-type cytokinins, which are locally synthesized in the hypocotyl, contribute to xylem development. The greater xylem development in Dutch cultivars might contribute to the high yield of the tomato.


2002 ◽  
Vol 50 (2) ◽  
pp. 179-184
Author(s):  
P. M. Arthanari ◽  
P. Gnanamoorthy ◽  
S. Ramasamy

Field experiments were conducted at Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India during the Rabi (November 1997-March 1998) and Kharif (July 1998-November 1998) seasons to identify the effect of silicon at panicle initiation on the growth of rice plant (Variety ADT-36) at different growth stages. Furnace slag was applied as a silicon source at 2 t/ha at the panicle initiation stage along with other nutrients. The dry matter production was recorded at the active tillering, panicle initiation, booting, flowering, one week after flowering and maturity stages in both the seasons. The total dry matter production was greater in the Kharif season than in the Rabi season. The application of slag at the panicle initiation stage along with N and K at the flowering stage had a significant influence over the dry matter production. A similar trend was observed in both the seasons. The silicon uptake was recorded at the panicle initiation and maturity stages. About 30-40% of the silicon absorbed during the early stages and the maturity stage was present in the shoot, whereas 20-30 % of the silicon absorbed during the maturity stages was present in the leaf blades. Based on the results, it is concluded that the supply of silicon during the panicle initiation stage is most important for plant growth.


Sign in / Sign up

Export Citation Format

Share Document