Ameliorative Role of N-Acetylcysteine on Toxic Potential of Titanium Dioxide Nanoparticles on The Brain of Albino Rats

Author(s):  
Shereen Elkhateeb ◽  
Hossam Attia
Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hanan R. H. Mohamed ◽  
Nahed A. Hussien

Titanium dioxide nanoparticles (TiO2NPs) are excessively used and represent one of the top five most commonly used nanoparticles worldwide. Recently, various studies referred to their toxic potential on various organs using different treatment route. Male Swiss Webster mice were orally administrated TiO2NPs (500 mg/kg b.w.) daily for five consecutive days and then animals were sacrificed at 24 h, 7 days, or 14 days after the last treatment. The present results report that exposure to TiO2NPs produces mild to moderate changes in the cytoarchitecture of brain tissue in a time dependent manner. Moreover, Comet assay revealed the apoptotic DNA fragmentation, while PCR-SSCP pattern and direct sequencing showed point mutation of Presenilin 1 gene at exon 5, gene linked to inherited forms of the Alzheimer’s disease. Therefore, from these findings, the present study concluded that TiO2NPs is genotoxic and mutagenic to brain tissue which in turn might lead to Alzheimer’s disease incidence.


2016 ◽  
Vol 7 ◽  
pp. 645-654 ◽  
Author(s):  
Bin Song ◽  
Yanli Zhang ◽  
Jia Liu ◽  
Xiaoli Feng ◽  
Ting Zhou ◽  
...  

Titanium dioxide nanoparticles (TiO2 NPs) possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS), apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism.


2020 ◽  
Vol 12 (29) ◽  
pp. 32446-32460 ◽  
Author(s):  
Elisa Parra-Ortiz ◽  
Sara Malekkhaiat Häffner ◽  
Thomas Saerbeck ◽  
Maximilian W. A. Skoda ◽  
Kathryn L. Browning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document