brain dysfunction
Recently Published Documents


TOTAL DOCUMENTS

1366
(FIVE YEARS 230)

H-INDEX

64
(FIVE YEARS 6)

2022 ◽  
Vol 23 (2) ◽  
pp. 961
Author(s):  
Takayuki Kobayashi ◽  
Hiroyuki Uchino ◽  
Eskil Elmér ◽  
Yukihiko Ogihara ◽  
Hidetoshi Fujita ◽  
...  

Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction resulting from a systemic inflammatory response to infection, but the mechanism remains unclear. The mitochondrial permeability transition pore (MPTP) could play a central role in the neuronal dysfunction, induction of apoptosis, and cell death in SAE. The mitochondrial isomerase cyclophilin D (CypD) is known to control the sensitivity of MPTP induction. We, therefore, established a cecal ligation and puncture (CLP) model, which is the gold standard in sepsis research, using CypD knockout (CypD KO) mice, and analyzed the disease phenotype and the possible molecular mechanism of SAE through metabolomic analyses of brain tissue. A comparison of adult, male wild-type, and CypD KO mice demonstrated statistically significant differences in body temperature, mortality, and histological changes. In the metabolomic analysis, the main finding was the maintenance of reduced glutathione (GSH) levels and the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio in the KO animals following CLP. In conclusion, we demonstrate that CypD is implicated in the pathogenesis of SAE, possibly related to the inhibition of MPTP induction and, as a consequence, the decreased production of ROS and other free radicals, thereby protecting mitochondrial and cellular function.


2022 ◽  
Author(s):  
Min Li ◽  
Ying Wang ◽  
Carlos Lopez-Naranjo ◽  
Aini Ismafairus Abd Hamid ◽  
Alan C. Evans ◽  
...  

This paper extends our frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. i) Create lifespan Hermitian Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control developmental equations for the mean and standard deviation of qEEG traditional and Hermitian Riemannian descriptive parameters were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. ii) We also show that the multinational harmonized Hermitian Riemannian norms produce z-scores with increased diagnostic accuracy to predict brain dysfunction at school-age produced by malnutrition only in the first year of life. We provide data and software for constructing norms. iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings.


Author(s):  
Fangfang Zhao ◽  
Yumin Luo

: Chronic cerebral ischemia is one of the common ischemic cerebrovascular diseases. Chronic cerebral ischemia can lead to brain dysfunction, and its pathophysiological mechanism involves inflammation, blood-brain barrier destruction, oxidative stress, and other factors. Due to it being difficult to detect, it is easily overlooked, and it is often only observed following onset of cognitive dysfunction. At present, there are few drugs for this treatment. DL-3-N-BUTYLPHTHALIDE (NBP), a compound extracted from celery seed, may play an important role in protecting against brain damage caused by chronic cerebral ischemia. Therefore, we pay more attention to the prevention and treatment of NBP on chronic cerebral ischemia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Yang ◽  
Mingming Chen ◽  
Jiayin Zheng ◽  
Xin Li ◽  
Xiaojuan Zhang

The blood-brain barrier (BBB) functions as a dynamic boundary that protects the central nervous system from blood and plays an important role in maintaining the homeostasis of the brain. Dysfunction of the BBB is a pathophysiological characteristic of multiple neurologic diseases. Glycocalyx covers the luminal side of vascular endothelial cells(ECs). Damage of glycocalyx leads to disruption of the BBB, while inhibiting glycocalyx degradation maintains BBB integrity. Heparin has been recognized as an anticoagulant and it protects endothelial glycocalyx from destruction. In this review, we summarize the role of glycocalyx in BBB formation and the therapeutic potency of heparin to provide a theoretical basis for the treatment of neurological diseases related to BBB breakdown.


2021 ◽  
Vol 50 (1) ◽  
pp. 721-721
Author(s):  
Alicia Alcamo ◽  
Gregory Barren ◽  
Andrew Becker ◽  
Jeffery Pennington ◽  
Martha Curley ◽  
...  

Author(s):  
Da Yan ◽  
Shengbin Wu ◽  
Mirza Tanzim Sami ◽  
Abdullateef Almudaifer ◽  
Zhe Jiang ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Natalia V. Gulyaeva ◽  
Mikhail V. Onufriev ◽  
Yulia V. Moiseeva

Progress in treating ischemic stroke (IS) and its delayed consequences has been frustratingly slow due to the insufficient knowledge on the mechanism. One important factor, the hypothalamic-pituitary-adrenocortical (HPA) axis is mostly neglected despite the fact that both clinical data and the results from rodent models of IS show that glucocorticoids, the hormones of this stress axis, are involved in IS-induced brain dysfunction. Though increased cortisol in IS is regarded as a biomarker of higher mortality and worse recovery prognosis, the detailed mechanisms of HPA axis dysfunction involvement in delayed post-stroke cognitive and emotional disorders remain obscure. In this review, we analyze IS-induced HPA axis alterations and supposed association of corticoid-dependent distant hippocampal damage to post-stroke brain disorders. A translationally important growing point in bridging the gap between IS pathogenesis and clinic is to investigate the involvement of the HPA axis disturbances and related hippocampal dysfunction at different stages of SI. Valid models that reproduce the state of the HPA axis in clinical cases of IS are needed, and this should be considered when planning pre-clinical research. In clinical studies of IS, it is useful to reinforce diagnostic and prognostic potential of cortisol and other HPA axis hormones. Finally, it is important to reveal IS patients with permanently disturbed HPA axis. Patients-at-risk with high cortisol prone to delayed remote hippocampal damage should be monitored since hippocampal dysfunction may be the basis for development of post-stroke cognitive and emotional disturbances, as well as epilepsy.


2021 ◽  
Vol 13 ◽  
Author(s):  
Niels Hansen ◽  
Alina Isabel Rediske

Delirium is a brain state involving severe brain dysfunction affecting cognitive and attentional capacities. Our opinion statement review aims to elucidate the relationship between abnormal arousal and locus coeruleus (LC) activity in cognitive dysfunction and inattention in delirium states. We propose (1) that enhanced noradrenaline release caused by altered arousal in hyperactive delirium states leads to increased noradrenergic transmission within the LC and subcortical and cortical brain regions including the prefrontal cortex and hippocampus, thus affecting how attention and cognition function. In hypoactive delirium states, however, we are presuming (2) that less arousal will cause the release of noradrenaline to diminish in the LC, followed by reduced noradrenergic transmission in cortical and subcortical brain areas concentrated within the prefrontal cortex and hippocampus, leading to deficient attention and cognitive processing. Studies addressing the measurement of noradrenaline and its derivatives in biomaterial probes regarding delirium are also covered in this article. In conclusion, the LC-NA system plays a crucial role in generating delirium. Yet there have been no large-scale studies investigating biomarkers of noradrenaline to help us draw conclusions for improving delirium’s diagnosis, treatment, and prognosis, and to better understand its pathogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yukari Shida ◽  
Hitoshi Endo ◽  
Satoshi Owada ◽  
Yutaka Inagaki ◽  
Hideaki Sumiyoshi ◽  
...  

AbstractTo fully understand the mechanisms governing learning and memory, animal models with minor interindividual variability and higher cognitive function are required. THA rats established by crossing those with high learning capacity exhibit excellent learning and memory abilities, but the factors underlying their phenotype are completely unknown. In the current study, we compare the hippocampi of parental strain Wistar rats to those of THA rats via metabolomic analysis in order to identify molecules specific to the THA rat hippocampus. Higher branched-chain amino acid (BCAA) levels and enhanced activation of BCAA metabolism-associated enzymes were observed in THA rats, suggesting that acetyl-CoA and acetylcholine are synthesized through BCAA catabolism. THA rats maintained high blood BCAA levels via uptake of BCAAs in the small intestine and suppression of BCAA catabolism in the liver. Feeding THA rats with a BCAA-reduced diet decreased acetylcholine levels and learning ability, thus, maintaining high BCAA levels while their proper metabolism in the hippocampus is the mechanisms underlying the high learning ability in THA rats. Identifying appropriate BCAA nutritional supplements and activation methods may thus hold potential for the prevention and amelioration of higher brain dysfunction, including learning disabilities and dementia.


Sign in / Sign up

Export Citation Format

Share Document