EFFECT OF HUMIC ACID AND ACETYL SALICYLIC ACID ON IMPROVING PRODUCTIVITY OF OREGANO (ORIGANUM SYRIACUML.) PLANT IRRIGATED WITH SALINE WATER

2019 ◽  
Vol 4 (5) ◽  
pp. 305-317
Author(s):  
M. R. Hanfy ◽  
R. M. M. A. ElShafay ◽  
M. A.M Ali ◽  
S. A. S. Abdallah
2020 ◽  
pp. 1-12
Author(s):  
E. K. Al-Fahdawe ◽  
A. A. Al-Sumaidaie ◽  
Y. K. Al-Hadithy

A pots experiment was conducted at the Department of Biology/College of Education for Girls/University of Anbar during Autumn season of 2018-2019 to study the effect of the salinity irrigation water and spray by humic acid in some of morphological, physiological, growth and yield traits of wheat cv. IPa. The experiment was randomized complete block design (RCBD) with three replications. The first factor was assigned for irrigation by saline water at four level (S0, S1, S2 and S3), while the second factor was the foliar spraying of humic acid in three level (0.0, 1.0 and 1.5 g l-1). The results showed that there was significant reduction in plant height, vegetative dry weight, biological yield and chlorophyll leaves content when the plants were irrigated by saline water approached to 41.09 cm, 0.747 g, 0.849 g plant-1 and 38.67 SPAD, respectively at salinity level of 8.3 ds m-1 compared with the plants which irrigated by fresh water. The total carbohydrates were significantly decreased at the treatment of 8.3 ds m-1 reached 18.71 mg g-1. Spray levels humic acid achieved a significant increase in plant height, dry weight of the vegetative part, biological yield and chlorophyll leaves content sprayed at 1.0 and 1.5 g l-1 compared to no sprayed. Nitrogen concentration was significantly increased, while both phosphorus and potassium were decreased in the vegetative parts of wheat as the salinity of irrigation water increased. However, the increase of humic acid levels led to significant increasing in nitrogen, phosphorus and potassium concentration.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 223-231
Author(s):  
H.-H. Yeh ◽  
W.-H. Wang

The utilization of membrane processes for drinking water treatment has become more popular. However, fouling by source water probably is the major factor prohibits its widespread application. In this research, the fouling phenomena of a microfiltration (MF) membrane were studied. The interactions among colloidal particles, calcium ion, and dissolved organics, such as salicylic acid, humic acid, and alginic acid, on MF fouling were focused. A lab-scale single hollow fiber MF membrane, made of polyvinylidenefluoride (PVDF), module was used. The results show that, for single organic compound, the extent of fouling caused by humic acid was higher that of alginic acid. For the latter, the permeate flux decrease at lower pH was more significant than those at higher pH. For low MW salicylic acid, both rejection and flux decrease were minor. It seems that solubility have strong correlation with fouling rate. The higher the solubility is, the lower the fouling rate. For sole colloidal particle system, latex beads with diameter close to the pore size of MF membrane showed severe fouling. Adding Ca can aggregate the latex beads, and alleviate fouling. However, calcium ion also found to increase fouling of alginic acid on membrane under neutral or alkali pH condition, probably via charge neutralization and/or bridging. In conclusion, MF fouling seems to be strongly related to the type of organics, size of colloidal particles, and the existence of divalent ions, in the feed water.


1987 ◽  
Vol 48 (4) ◽  
pp. 501-504 ◽  
Author(s):  
C. Doutremepuich ◽  
D. Pailley ◽  
M.C. Anne ◽  
O. de Séze ◽  
J. Paccalin ◽  
...  

2007 ◽  
Vol 87 (3) ◽  
pp. 581-585 ◽  
Author(s):  
Ahmet Korkmaz ◽  
Murat Uzunlu ◽  
Ali Riza Demirkiran

Salicylic acid (SA) is a common plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. An experiment was, therefore, conducted to test whether acetyl salicylic acid (ASA) application at various concentrations through seed immersion or foliar spray would protect muskmelon [Cucumis melo L. (Reticulatus Group)] seedlings subjected to chilling stress. Twenty-one-day-old plants pre-treated with ASA (0, 0.1, 0.25, 0.50 or 1.0 mM) were subjected to chilling stress for 72 h at 3 ± 0.5°C. ASA, applied either through seed immersion or foliar spray, was effective within the range of 0.1 to 1 mM in inducing tolerance to chilling stress in muskmelon seedlings; however, there was no significant difference between application methods. ASA significantly and curvilinearly affected all seedling growth and stress indicator variables tested except shoot dry weight. The best protection was obtained from seedlings pre-treated with 0.5 mM ASA. The highest ASA concentration used was slightly less effective in providing chilling stress protection. Even though both methods provided similar means of protection, due to its simplicity and practicality, immersion of muskmelon seeds prior to sowing in 0.5 mM ASA would be a more desirable method to induce tolerance to chilling stress. Key words: Cucumis melo, aspirin, chilling stress tolerance, gas exchange, electrolyte leakage


2015 ◽  
Vol 56 (3) ◽  
pp. 330-340 ◽  
Author(s):  
André Freire Cruz ◽  
Nathalia Lima Medeiros ◽  
Gustavo Lessa Benedet ◽  
Maira Borges Araújo ◽  
Carlos Hidemi Uesugi ◽  
...  

2001 ◽  
Vol 53 (4) ◽  
pp. 237-243
Author(s):  
Mohamed Z. Gad ◽  
Mahmoud M. Khattab ◽  
Nadia A. Moustafa ◽  
Jean-Luc Burgaud

Sign in / Sign up

Export Citation Format

Share Document