scholarly journals Impact of Coastal Erosion and Sedimentation along the Northern Coast of Sinai Peninsula, Case Study: AL-ARISH Harbor Coast

2012 ◽  
Vol 16 (1) ◽  
pp. 118-125
Author(s):  
Ehab Tolba
Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 637
Author(s):  
Huong Thi Thuy Nguyen ◽  
Giles E. S. Hardy ◽  
Tuat Van Le ◽  
Huy Quoc Nguyen ◽  
Hoang Huy Nguyen ◽  
...  

Mangrove forests can ameliorate the impacts of typhoons and storms, but their extent is threatened by coastal development. The northern coast of Vietnam is especially vulnerable as typhoons frequently hit it during the monsoon season. However, temporal change information in mangrove cover distribution in this region is incomplete. Therefore, this study was undertaken to detect change in the spatial distribution of mangroves in Thanh Hoa and Nghe An provinces and identify reasons for the cover change. Landsat satellite images from 1973 to 2020 were analyzed using the NDVI method combined with visual interpretation to detect mangrove area change. Six LULC classes were categorized: mangrove forest, other forests, aquaculture, other land use, mudflat, and water. The mangrove cover in Nghe An province was estimated to be 66.5 ha in 1973 and increased to 323.0 ha in 2020. Mangrove cover in Thanh Hoa province was 366.1 ha in 1973, decreased to 61.7 ha in 1995, and rose to 791.1 ha in 2020. Aquaculture was the main reason for the loss of mangroves in both provinces. Overall, the percentage of mangrove loss from aquaculture was 42.5% for Nghe An province and 60.1% for Thanh Hoa province. Mangrove restoration efforts have contributed significantly to mangrove cover, with more than 1300 ha being planted by 2020. This study reveals that improving mangrove restoration success remains a challenge for these provinces, and further refinement of engineering techniques is needed to improve restoration outcomes.


2021 ◽  
Vol 9 (8) ◽  
pp. 839
Author(s):  
Tarek N. Salem ◽  
Nadia M. Elkhawas ◽  
Ahmed M. Elnady

The erosion of limestone and calcarenite ridges that existed parallel to the Mediterranean shoreline forms the calcareous sand (CS) formation at the surface layer of Egypt's northern coast. The CS is often combined with broken shells which are considered geotechnically problematic due to their possible crushability and relatively high compressibility. In this research, CS samples collected from a site along the northern coast of Egypt are studied to better understand its behavior under normal and shear stresses. Reconstituted CS specimens with different ratios of broken shells (BS) are also investigated to study the effect of BS ratios on the soil mixture strength behavior. The strength is evaluated using laboratory direct-shear and one-dimensional compression tests (oedometer test). The CS specimens are not exposed to significant crushability even under relatively high-stress levels. In addition, a 3D finite element analysis (FEA) is presented in this paper to study the degradation offshore pile capacity in CS having different percentages of BS. The stress–strain results using oedometer tests are compared with a numerical model, and it gave identical matching for most cases. The effects of pile diameter and embedment depth parameters are then studied for the case study on the northern coast. Three different mixing ratios of CS and BS have been used, CS + 10% BS, CS + 30% BS, and CS + 50% BS, which resulted in a decrease of the ultimate vertical compression pile load capacity by 8.8%, 15%, and 16%, respectively.


Author(s):  
Rosaria E. Musumeci ◽  
Carla Faraci ◽  
Felice Arena ◽  
Enrico Foti

In the present paper the risk of beach erosion is evaluated by applying the Equivalent Triangular Storm (ETS). The selected case study is ‘La Plaja’ beach located in the South of Catania, Sicily. The proposed approach has shown that when the ETS model is applied, a shoreline retreat has been found which on average overestimates the one obtained by means of actual storm data of about 35%. The model has been applied for the determination of the return period of shoreline recession due to beach erosion during extreme events in order to recover risk maps, which can provide useful information in the planning of coastal interventions. Finally the model has been applied to predict the shoreline retreat in the presence of a submerged breakwater, confirming that the introduction of such coastal protection work strongly limits the risk of coastal erosion.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 805
Author(s):  
Francesco Bianco ◽  
Paolo Conti ◽  
Salvador García-Ayllon ◽  
Enzo Pranzini

The assessment of coastal erosion risk is a major challenge, since environmental and geomorphic features, together with sea state parameters, can seriously change the configuration of coastal areas. In addition, the anthropic actions of the coastal communities may also drastically modify the configuration of the coast in vulnerable areas. In this study, a linkage between regional mapping guidelines and national geological cartography procedures is presented as a meaningful tool in the geomorphic trends analysis for the integrated mapping of the main morphological patterns of San Vincenzo’s coastal area, in the region of Tuscany (Italy). Comparing and joining different procedures—which have different scales and topics—requires adapting the fields and the information provided in maps and databases. In this case study, a GIS morpho-sedimentological approach is developed. This GIS approach enables us to cover several issues simultaneously, such as the representation of coastal active processes, the adaptation of regional and national cartography to coastal erosion assessment, and lastly the calculation of the sedimentary stock analysis, since it represents the first attribute of coasts to be preserved in a resilience-oriented integrated assessment.


Sign in / Sign up

Export Citation Format

Share Document