scholarly journals Storm surges in the Gulf of Finland of the Baltic Sea

Author(s):  
Evgeny A. Zakharchuk ◽  
◽  
Vladimir N. Sukhachev ◽  
Natal'ia A. Tikhonova ◽  
◽  
...  

The characteristics of storm surges in different regions of the Gulf of Finland in the second half of the XX and the beginning of the XXI centuries were investigated on the basis of tide gauge measurements of sea level, instrumental observations of the wind and data from the reanalysis of meteorological fields. A criterion for identifying storm surges, taking into account spatial changes in their intensity, is proposed. The results indicate that depending on the year and the location of the station, the number of storm surges varies in the Gulf of Finland in a wide range: from 0 - 1 to 16 - 52 cases per year. The average duration of storm surges varies from 6.7 to 9.0 hours, and the maximum reaches 26 to 96 hours. Shown that in recent decades, in most regions, there has been a tendency towards a decrease in the number of storm surges, their dispersion and sea level maximum. The distributions of the probabilities of wind and atmospheric pressure during storm surges are given. Estimates of two-dimensional probability densities indicate that during storm surges, winds blowing from the west and southwest with speeds of 4-13 m / s are most likely. At the northern coast and at the top of the bay, the most probable values of atmospheric pressure during storm surges are 995 hPa. On the southern coast of the Gulf of Finland, atmospheric pressure values of 1005 - 1015 hPa are most likely. The results obtained indicate that the atmospheric pressure over the Gulf of Finland during storm surges is not very low. This is due to the fact that the trajectories of the centers of cyclones causing storm surges pass north of the Gulf of Finland. Analysis of meteorological information also showed the presence of significant negative trends in interannual variations in the dispersion of the horizontal atmospheric pressure gradient, average values and maximums of wind speed. It is concluded that the revealed changes in the characteristics of storm surges are associated with a decrease in the intensity of cyclogenesis in the atmosphere over the Baltic Sea in recent decades.

Oceanology ◽  
2013 ◽  
Vol 53 (2) ◽  
pp. 145-151 ◽  
Author(s):  
E. A. Kulikov ◽  
I. P. Medvedev

2018 ◽  
Vol 65 (3) ◽  
pp. 163-176
Author(s):  
Andrei Sokolov ◽  
Boris Chubarenko

AbstractIn the current study we use a three-dimensional model with hydrodynamic and spectral wave modules operating in a coupled mode to simulate the response of currents and wind wave fields to winds of 20–25 m/sec offshore of the protective structure of the Saint Petersburg Flood Prevention Facility Complex. The model was calibrated against field data, which allowed us to obtain a tool describing storm situations in the eastern part of the Gulf of Finland with a satisfactory accuracy. The numerical modeling showed that the protective dam did not have a noticeable effect on the levels of stormsurge, significantwave height, or current speed in areas seaward of the dam. The increase in erosion processes on the southern shore of the easternmost part of the Gulf of Finland in recent past has most probably been related to other factors. We found that if a west or south-west wind of at least 25 m/s blows over the Baltic Sea for at least 16 hours, the level of storm surges seaward of the dam may reach 3 or more meters. An artificial strengthening of the coastline and the creation of shore protection structures are recommended.


2009 ◽  
Vol 18 (3-4) ◽  
pp. 440-459 ◽  
Author(s):  
K. HYYTIÄINEN ◽  
H. AHTIAINEN ◽  
J. HEIKKILÄ

This study introduces a prototype model for evaluating measures to abate agricultural nutrients in the Baltic Sea from a Finnish national perspective. The stochastic simulation model integrates nutrient dynamics of nitrogen and phosphorus in the sea basins adjoining the Finnish coast, nutrient loads from land and other sources, benefits from nutrient abatement (in the form of recreation and other ecosystem services) and the costs of agricultural abatement activities. The aim of the study is to present the overall structure of the model and to demonstrate its potential using preliminary parameters. The model is made flexible for further improvements in all of its ecological and economic components. The results of a sensitivity analysis suggest that investments in reducing the nutrient load from arable land in Finland would become profitable only if the neighboring countries in the northern Baltic committed themselves to similar reductions. Environmental investments for improving water quality yield the highest returns for the Bothnian Bay and the Gulf of Finland, with smaller returns for the Bothnian Sea. Somewhat surprisingly, in the Bothnian Bay the abatement activities become profitable from the national viewpoint, because the riverine loads from Finland represent a high proportion of the total nutrient loads. In the Gulf of Finland, this proportion is low, but the size of the coastal population benefiting from improved water quality is high.;


2020 ◽  
Vol 163 ◽  
pp. 03006
Author(s):  
Stepan Klubov ◽  
Victor Tretyakov

The results of the calculation of the inflow of pollutants into the Gulf of Finland with the outflow from Saint Petersburg watercourses are considered. Data of regular hydrochemical observations by State Unitary Enterprise “Vodokanal of Saint Petersburg” for 2018 were used for the calculation. The contribution of the megalopolis of Saint Petersburg to change of the pollutants inflow is estimated.


2020 ◽  
Author(s):  
Hedi Kanarik ◽  
Laura Tuomi ◽  
Jan-Victor Björkqvist ◽  
Tuomas Kärnä ◽  
Antti Westerlund

<p>Currents in the Baltic Sea are relatively weak and are thus often expected to have a negligible effect on sea surface waves. To evaluate the magnitude of wave–current interactions in the Baltic Sea, we ran the third generation wave model WAM with and without surface currents from the 3D hydrodynamical model Nemo4. The results showed that the currents have a notable effect on wave field only on rare occasions and that the effects are largest in coastal areas of the Baltic Proper, most notably in the western Gotland Basin, and the Gulf of Finland. The simulations showed that the currents in the Baltic Sea can cause differences of significant wave height up to tens of centimeters. More notable effect was the change in the peak of the wave spectrum from swell to wind driven waves and vice versa in some occasions. In our study w<span>e mostly focus on the events of strong wave–current interactions in the northern Baltic Proper and Gulf of Finland as we have measured wave spectra available from these locations. From the comparison with wave buoy measurements we see that implementing surface currents</span> <span>slightly improves the </span><span>m</span><span>odelled peak period in the Gulf of Finland.</span> <span>The Gulf of Finland is of special interest also because a group of ADCP’s were installed close to the wave buoy. The current measurements from these devices can therefore be used to evaluate the accuracy of the currents in the hydrodynamical model. </span></p>


2020 ◽  
Author(s):  
Nikolai Voronov ◽  
Nataly Victorova ◽  
Dmitry Shilov

<p>The purpose of the essay was analysis and evaluation of the load generated by pollutants in the Russian part of the catchment area directly entering the Baltic Sea, as well as consideration of pro-rata contribution of all sources in the formation of factual biogenous load at the catchment areas of rivers flowing into the Gulf of Finland.</p><p>The assessment of biogenous load was made on the basis of observation data, statistical reporting data, mathematical modelling data and additional monitoring data for bodies of water in previously uncontrolled areas. To assess the amount of biogenous input from uncontrolled tributaries of the Gulf of Finland, field observations of the discharge and concentration of pollutants over a number of past years were analyzed and generalized.</p><p>It is noted that there has been a tendency towards reduction of pollutants for a number of substances in the last decade, as shown by the analysis. It is demonstrated that a significant decrease is due to reduced load from point sources that discharge pollutants directly to the Baltic Sea and its bays. Some proposals are presented for improving the Russian system of monitoring the load exerted on water bodies.</p>


2014 ◽  
Vol 129 ◽  
pp. 135-149 ◽  
Author(s):  
Inga Lips ◽  
Nelli Rünk ◽  
Villu Kikas ◽  
Aet Meerits ◽  
Urmas Lips

Sign in / Sign up

Export Citation Format

Share Document