The Role of Antioxidant Vitamins and Enzymes in the Prevention of Exercise-Induced Muscle Damage

1996 ◽  
Vol 21 (3) ◽  
pp. 213-238 ◽  
Author(s):  
J. Caroline Dekkers ◽  
Lorenz J.P. van Doornen ◽  
Han C.G. Kemper
2010 ◽  
Vol 24 (4) ◽  
pp. 564-568 ◽  
Author(s):  
Martin D. Carmichael ◽  
J. Mark Davis ◽  
E. Angela Murphy ◽  
James A. Carson ◽  
N. Van Rooijen ◽  
...  

2015 ◽  
Vol 11 (5) ◽  
pp. 244-250 ◽  
Author(s):  
Jooyoung Kim ◽  
Joohyung Lee ◽  
Seungho Kim ◽  
Daeyoung Yoon ◽  
Jieun Kim ◽  
...  

2018 ◽  
Author(s):  
Brad Jon Schoenfeld ◽  
Bret Contreras

This letter is a response to the paper by Damas et al (2017) titled, “The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis,” which, in part, endeavored to review the role of exercise-induced muscle damage on muscle hypertrophy. We feel there are a number of issues in interpretation of research and extrapolation that preclude drawing the inference expressed in the paper that muscle damage neither explains nor potentiates increases in muscle hypertrophy. The intent of our letter is not to suggest that a causal role exists between hypertrophy and microinjury. Rather, we hope to provide balance to the evidence presented and offer the opinion that the jury is still very much out as to providing answers on the topic.


2021 ◽  
Vol 51 (5) ◽  
pp. 863-872
Author(s):  
Zidong Li ◽  
Zachary J. McKenna ◽  
Matthew R. Kuennen ◽  
Flávio de Castro Magalhães ◽  
Christine M. Mermier ◽  
...  

1999 ◽  
Vol 27 (5) ◽  
pp. 594-599 ◽  
Author(s):  
Malachy P. McHugh ◽  
Declan A. J. Connolly ◽  
Roger G. Eston ◽  
Ian J. Kremenic ◽  
Stephen J. Nicholas ◽  
...  

2018 ◽  
Vol 6 (9) ◽  
pp. 1594-1598 ◽  
Author(s):  
Shreef G. N. Gabrial ◽  
Marie-Christine R. Shakib ◽  
Gamal N. Gabrial

BACKGROUND: Strenuous non-regular exercise increases reactive oxygen species ROS level leading to an impaired balance between the endogenous antioxidant defence system and the free radicals production. Antioxidants intake can detoxify the peroxides produced during exercise, attenuating the inflammatory responses and therefore may prevent exercise-induced muscle damage. AIM: The purpose of this study was to determine the role of vitamin C intake in attenuating markers of muscle damage, oxidative stress and inflammatory responses in male adolescents performing the non-regular strenuous exercise. MATERIAL AND METHODS: Twenty recreationally active male adolescents were assigned to participate in the study. Eligible subjects performed strenuous recreational exercise (2-3 times per week) were randomly divided into two groups: The vitamin C (VC) group that consumed 500 mg of capsulated vitamin C after breakfast for a period of 90 days and the placebo (PL) group that consumed identical capsules in form and aspect that contained 500 mg of maltodextrin for the same period. Aspartate aminotransferase (AST), creatine kinase (CK), lactate dehydrogenase (LDH) were assessed for muscle damage. Malondialdehyde (MDA) was evaluated as a marker of lipid peroxidation. Plasma creatinine, uric acid and urea were determined to monitor kidney function. C-reactive protein, a marker of systemic inflammation was also measured. RESULTS: In comparison between PL and VC groups, the plasma concentrations of muscle damage markers, oxidative stress markers, kidney function and inflammatory markers showed no significant difference in their baseline values (P > 0.05). The plasma concentrations of CK, LDH, MDA, urea, uric acid and CRP were significantly decreased in the VC group (P < 0.05) as compared to their values before the intake of vitamin C. CONCLUSION: The present results support the intake of vitamin C as an antioxidant for attenuating exercise-induced muscle damage, oxidative stress and inflammatory markers in male adolescents performing the strenuous physical activity.


2006 ◽  
Vol 291 (5) ◽  
pp. R1344-R1348 ◽  
Author(s):  
Martin D. Carmichael ◽  
J. Mark Davis ◽  
E. Angela Murphy ◽  
Adrienne S. Brown ◽  
James A. Carson ◽  
...  

Brain cytokines, induced by various inflammatory challenges, have been linked to sickness behaviors, including fatigue. However, the relationship between brain cytokines and fatigue after exercise is not well understood. Delayed recovery of running performance after muscle-damaging downhill running is associated with increased brain IL-1β concentration compared with uphill running. However, there has been no systematic evaluation of the direct effect of brain IL-1β on running performance after exercise-induced muscle damage. This study examined the specific role of brain IL-1β on running performance (either treadmill or wheel running) after uphill and downhill running by manipulating brain IL-1β activity via intracerebroventricular injection of either IL-1 receptor antagonist (ra; downhill runners) or IL-1β (uphill runners). Male C57BL/6 mice were assigned to the following groups: uphill-saline, uphill-IL-1β, downhill-saline, or downhill-IL-1ra. Mice initially ran on a motor-driven treadmill at 22 m/min and −14% or +14% grade for 150 min. After the run, at 8 h (wheel cage) or 22 h (treadmill), uphill mice received intracerebroventricular injections of IL-1β (900 pg in 2 μl saline) or saline (2 μl), whereas downhill runners received IL-1ra (1.8 μg in 2 μl saline) or saline (2 μl). Later (2 h), running performance was measured (wheel running activity and treadmill run to fatigue). Injection of IL-1β significantly decreased wheel running activity in uphill runners ( P < 0.01), whereas IL-1ra improved wheel running in downhill runners ( P < 0.05). Similarly, IL-1β decreased and Il-1ra increased run time to fatigue in the uphill and downhill runners, respectively ( P < 0.01). These results support the hypothesis that increased brain IL-1β plays an important role in fatigue after muscle-damaging exercise.


Sign in / Sign up

Export Citation Format

Share Document