Spatial interpolation approach-based appraisal of groundwater quality of arid regions

2019 ◽  
Vol 68 (6) ◽  
pp. 431-447 ◽  
Author(s):  
Kanak Moharir ◽  
Chaitanya Pande ◽  
Sudhir Kumar Singh ◽  
Pandurang Choudhari ◽  
Rawat Kishan ◽  
...  

Abstract The primary objective was appraisal of groundwater quality during pre- and post-monsoon seasons for irrigation purposes. Good quality groundwater is required for high crop yields in arid regions. A total of 45 samples were collected from wells and analyzed in the laboratory for this research work. Different water quality parameters were determined from these samples, namely electrical conductivity (EC), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), sodium percent (Na%), and permeability index (PI) during the pre- and post-monsoon season. The water types were identified through a Piper-trilinear diagram. Fifty per cent of the water samples of the total basin area fall under the saline category. The local farmers heavily rely on groundwater for the irrigation of crops. Excess use of groundwater for irrigation raises soil salinity. Some parts of the study area are facing serious problems such as loss of crop yields, and low availability of good quality groundwater even for drinking purposes. The results highlight that the study area has a high salinity content (C3) and low sodium (S1). The maps for different water quality parameters were generated using inverse distance weighted (IDW) interpolation method in ArcGIS 10.3 software.

2020 ◽  
Vol 15 (4) ◽  
pp. 960-972
Author(s):  
M. F. Serder ◽  
M. S. Islam ◽  
M. R. Hasan ◽  
M. S. Yeasmin ◽  
M. G. Mostafa

Abstract The study aimed to assess the coastal surface water quality for irrigation purposes through the analysis of the water samples of some selected estuaries, rivers, and ponds. The analysis results showed that the mean value of typical water quality parameters like electrical conductivity (EC), total dissolved solids (TDS), sodium (Na+), and chloride (Cl−) ions exceeded the permissible limit of the Department of Environment (DoE), Bangladesh 2010, and FAO, 1985 for the pre- and post-monsoon seasons. The Piper diagram indicated a Na-Cl water type, especially during the pre- and post-monsoon seasons. The water quality parameters in the areas showed a higher amount than the standard permissible limits, indicating that the quality is deteriorating. The water quality index values for domestic uses showed very poorly to unsuitable in most of the surface waters except pond water, especially during the pre- and post-monsoon periods. The surface water quality index for irrigation purpose usages was found to be high and/ or severely restricted (score: 0–55) during the pre- and post-monsoon seasons. The study observed that due to saline water intrusion, the water quality deterioration started from post-monsoon and reached its highest level during the pre-monsoon season, which gradually depreciates the water quality in coastal watersheds of Bangladesh.


2021 ◽  
Vol 30 (3) ◽  
pp. 546-561
Author(s):  
K. Mohammed Rizwan ◽  
V. Thirukumaran ◽  
M. Suresh

The aims of the current research are to assess the drinking water quality of the groundwater in the Gadilam River Basin, which is located in the northern part of Tamil Nadu, by identifying the groundwater quality index and examine its suitability for drinking. The current work determines the levels of groundwater quality parameters based on 120 groundwater samples; 50 samples from Archaean formation, 34 samples from Quaternary formation, 35 samples from Tertiary formation and the remaining sample from Cretaceous formation. Additionally, this research compares the determined levels with the various standards for drinking. Furthermore, the variability of parameters of the groundwater quality is explored in this paper by using the spatial interpolation method. The conclusion of this research reveals that the groundwater quality parameters such as Calcium (Ca2+), Magnesium (Mg2+), Nitrate (NO32-), Fluoride (F-), Sulphate (SO42-), Bi-carbonate (HCO3-) and Percentage of Hydrogen (pH) values are observed to be within the limiting value for WHO 2017 in all the formations during the seasons in which they were taken. The water quality index (WQI) values of the Archaean, Quaternary and Tertiary formations are found to be less than 100 meq/L in all stations in both seasons. In order of WQI, these stations come under the category of “Excellent” and “Good”. The Piper trilinear classification of groundwater samples fall in the field of mixed Ca-Mg-Cl, and No dominance, some of the samples represent Na-K, Cl types of water.


Author(s):  
Au Hai Nguyen ◽  
Nhi Thi Tuyet Pham ◽  
Vy Hong Minh Tat ◽  
Hien Tan Truong ◽  
Hiep Ngoc Tran ◽  
...  

Pleistocene aquifer is exploited for many purposes, including irrigation, domestic, production, and livestock use in Phu My town, Ba Ria – Vung Tau province. Groundwater Quality Index (GWQI) method combined with Geographic Information System (GIS) foundation is applied to determine the spatial variation as well as the suitability of groundwater in the study area. Water quality parameters in this study include pH, TDS, total hardness, Cl-, F-, NH4+, NO3-, SO42-, Pb2+, and Fe2+ were selected for analyzing from 17 monitoring wells in dry and wet seasons in 2017. The results indicate that water quality parameters such as Cl-, F-, NH4+-N, Pb2+ và Fe2+ exceed the maximum allowable levels by National Technical Regulation on Groundwater Quality. The groundwater quality, according to GWQI analysis results, shows that indicate 88% and 94% of the monitoring wells are from “good” to “excellent” type in the dry and wet seasons, respectively. The number of wells that have water quality from “poor” to “water unsuitable for drinking purpose” varies between the dry and wet seasons. Corresponding with the GWQI map, it shows that the area with good quality groundwater accounts for 98% of the total study area (331.44 km2) in the dry season and 94.5% of the study area (319.58 km2) in the wet season.


Author(s):  
Mansi Srivastava ◽  
P. K. Srivastava ◽  
Dharmendra Kumar ◽  
Ajay Kumar

Abstract A parametric investigation was carried out to estimate the Uranium concentration and other associated water quality parameters for the groundwater in Deoghar district, Jharkhand. Total 150 groundwater samples have been collected from dig wells, hand pumps, tube wells, etc. for the pre and post-monsoon seasons. A Quantalase Uranium analyzer was used to measure the uranium concentration. The distribution of pH, TDS, DO, nitrate, sulfate, uranium along with the radiation has been determined. It was found that the uranium concentration in groundwater varies from 0.10 to 11.30ppb in pre-monsoon and 0.15–6.50ppb in the post-monsoon which is well below the normal tolerance limit (i.e.30 μg/l WHO). This low availability of Uranium has been attributed due to the existence of a lesser number of rocks containing uranium as a source in that area. An attempt has been made to correlate the uranium concentration with the water quality parameters for both seasons. The correlation data reveals that ORP, nitrate, phosphate, calcium, and magnesium show a positive correlation with uranium concentration for both seasons on the other hand TDS, EC, temperature, DO, fluoride, and chloride show negative correlation. The positive correlation implies that uranium may be present in groundwater as a dissolved salt of these parameters. Comparative studies for the parameters have been done for both the seasons and various factors have been discussed for the occurrence of the same. The annual effective dose associated with the ingestion of uranium by the population of the region has been estimated using USPEA equations.


Author(s):  
S. Sahoo ◽  
A. Kaur ◽  
P. Litoria ◽  
B. Pateriya

Over period of time, the water usage and management is under stress for various reasons including pollution in both surface and subsurface. The groundwater quality decreases due to the solid waste from urban and industrial nodes, rapid use of insecticides and pesticides in agricultural practices. In this study, ground water quality maps for Rupnagar district of Punjab has been prepared using geospatial interpolation technique through Inverse Distance Weighted (IDW) approach. IDW technique has been used for major ground water quality parameters observed from the field samples like Arsenic, Hardness, pH, Iron, Fluoride, TDS, and Sulphate. To assess the ground water quality of the Rupnagar district, total 280 numbers of samples from various sources of tubewells for both pre and post monsoon have collected. Out of which, 80 to 113 samples found Iron with non potable limits ranging 0.3–1.1mg/l and 0.3–1.02mg/l according to BIS standard for both the seasons respectively. Chamkaur Sahib, Rupnagar, Morinda blocks have been found non potable limit of iron in both pre & post-monsoon. 11 to 52 samples in this region have sulphate with permissible limits in both the season ranging 200–400mg/l and 201–400mg/l. But arsenic had acceptable limit in both the season. Various parameters-wise ground water quality map is generated using the range values of drinking water quality to know the distribution of different parameters and diversification in the concentration of different elements. These maps are very much needful for human being to expand awareness among the people to maintain the Cleanness of water at their highest quality and purity levels to achieve a healthy life.


2018 ◽  
Vol 5 ◽  
pp. 43-50
Author(s):  
Razim Ganesh ◽  
Rebika Koju ◽  
Raja Ram Prajapati

Water is necessary for all life on earth. Every living creature on the Earth depends on water for their survival; however the supply of water on Earth is limited. Groundwater, the important source of water supply to many people around the world, is accessed through stone spouts, springs, dug wells and infiltration galleries in and around Kathmandu Valley since ancient time. The extraction of groundwater in Kathmandu Valley is increasing day by day due to increase in population, haphazard urbanization and unplanned industrialization. Drinking water quality and quantity is one of the major issues which need to be taken seriously, since clean water and sanitation are human rights and essential to life. The present study aims to prepare water table map and groundwater quality map from unconfined aquifer of Bhaktapur Municipality. Geographic Information System (GIS) based groundwater table mapping for 472 samples were used. Inverse Distance Weighted (IDW) method was used for 86 samples for spatial interpolation of chemical indices. Surface maps are prepared for water quality parameters (pH, turbidity, conductivity, TDS, total hardness, iron, ammonia, nitrate, chloride, alkalinity and E-coli) in the GIS Software by interpolation between the available data. Water table elevation map shows that groundwater levels are shallow at wells located close to agricultural field. From the water quality mapping of the Bhaktapur Municipality, it is seen that the most of the water quality parameters are within the maximum permissible limit set by WHO and NDWQS. It is noted that quality of ground water in the study area exceeds Nepal drinking water quality standards on the basis of measured values of chloride, ammonia and nitrate in majority of wells. High concentration of chloride, ammonia and nitrate were found in most of water samples from the central part and in around the periphery of the municipality boundary, which may be due to infiltration of agricultural runoff and leaching of sewage pollutants.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
N. S. Elangovan ◽  
M. Dharmendirakumar

Groundwater quality in Chennai city along the Cooum river, during the premonsoon (June–July) and postmonsoon (Dec–Jan) for three years, from 2009 to 2011, was analyzed. Groundwater samples were collected from 20 bore wells on either side of the river. The analysis focused on the determination of seven specific water quality parameters, namely, pH, EC, TDS, BOD, COD, Na and Pb, using standard procedures. The statistical analysis, like the mean and standard deviation, coefficient of variance, and correlation, and multilinear regression analysis of the obtained data were carried out. The analysis of the collected samples reveals that the stated water quality parameters have not complied with the WHO standards, and the water is not fit for drinking and domestic purposes. The correlation and multilinear regression analyses suggest that the conductivity has a significant correlation with the other six considered water quality parameters.


Author(s):  
A Shivakrishna ◽  
Karankumar Ramteke ◽  
M Dhanya ◽  
R Charitha ◽  
Sahina Aktar ◽  
...  

Kolleru lake is one of Asia’s largest freshwater lakes, which has undergone tremendous changes in the water quality due to the sewage, pollution and development of aquaculture in its surrounding area. This study is undertaken to evaluate the present water quality scenario existing in Kolleru lake, which has been affected seriously due to the anthropogenic disturbances since long. Water samples were collected from ten sampling locations within the lake during pre and post-monsoon seasons of 2017-18. A total of 11 water quality parameters were analysed such as pH, temperature, EC, TDS, TSS, total alkalinity, total hardness, dissolved oxygen, salinity, COD, and nitrates. Parameters were estimated by using a standard protocol of APHA 2012. The spatial distribution maps of water quality were generated from pre and post monsoon data using Arc GIS software. Spatio-temporal variation of all parameters indicated that the water quality found was unsatisfactory within the Kolleru lake. The present study shows the better water quality in the post-monsoon season. The Inverse Distance Weighting (IDW) interpolation spatial mapping was also used for water quality mapping to observe the environmental variation for protecting the important freshwater ecosystem-Kolleru lake. The outcome of GIS analysis demonstrated the spatial visualization of the lodging evolution and geographical distribution trends of water quality parameters within the study area.


2021 ◽  
Vol 241 ◽  
pp. 01005
Author(s):  
Naseraldin Kayemah ◽  
Rami Al-Ruzouq ◽  
Abdallah Shanableh ◽  
Abdullah Gokhan Yilmaz

The rapid growth in the world population resulted in an increase of the freshwater needs in many sectors. Groundwater is the most important freshwater source specially for arid and semi-arid regions due to lack of surface water sources and low precipitation rates in those regions. In this study, monthly groundwater quality data were collected from eleven well fields in Sharjah over the period of 2004-2017. Water quality parameters including bicarbonate, calcium, chloride, fluoride, magnesium, sodium and sulphate were selected for the analysis. In the study, water quality index (WQI) process is used to develop groundwater quality index (GWQI) for Sharjah using above mentioned water quality parameters. Mann-Kendall and Spearman’s Rho tests were adopted as non-parametric trend tests for temporal (trend) analysis of GWQI, whereas inverse distance weighting interpolation was used in GWQI spatial trend analysis. Temporal trend analysis results showed significant trends in 8 out of 11 well fields. Spatial analysis showed the highest values for salinity ions in the well fields closest to the northern region, whereas the lowest values were detected in the southern region.


Author(s):  
R. E. Daffi ◽  
M. I. Alfa ◽  
E. S. Ibrahim

Water quality assessment is an important part of environmental quality management especially in groundwater resources located close to sources of contamination. This study involved the assessment of groundwater quality for hand dug wells at locations with proximity to pit latrines in Vom community, Plateau State, Nigeria and the use of GIS for data analysis. Water samples were collected from six (6) locations in a small area to assume possible interaction between the water in the sampling wells, the maximum distance between any two points being 100 m and the minimum distance being 22 m. Eleven (11) physical, bacteriological and chemical parameters were analyzed for the water samples. The results were compared with World Health Organization and Nigerian Standard for Drinking Water Quality standards. The chemical parameters in the samples tested met the WHO and NSDWQ limits with the exception of pH which was slightly acidic for four samples. The results also showed that E. coli was found in all the samples tested. This may be attributed to the proximity of the wells to pit latrines. The results obtained from laboratory analyses were inputted into a GIS database in ILWIS 3.8 where the variation maps were developed and also classified maps for each of the parameters based on whether they meet WHO standards or not. The classified maps were all overlaid in GIS to develop the groundwater quality information map where any point highlighted gives information on the parameters for that point. This makes the retrieval of water quality parameters easy and also the comparison of the parameters with respect to location. Treatment of the groundwater with chemicals like soda ash and chlorine are recommended before consumption. It is generally recommended that wells should not be located in close proximity to onsite underground wastes disposal pits. Government should provide sufficient potable water for the Vom Community.


Sign in / Sign up

Export Citation Format

Share Document