scholarly journals A knowledge-based method for the automatic determination of hydrological model structures

2019 ◽  
Vol 21 (6) ◽  
pp. 1163-1178 ◽  
Author(s):  
Jingchao Jiang ◽  
A-Xing Zhu ◽  
Cheng-Zhi Qin ◽  
Junzhi Liu

Abstract To determine a suitable hydrological model structure for a specific application context using integrated modelling frameworks, modellers usually need to manually select the required hydrological processes, identify the appropriate algorithm for each process, and couple the algorithms' software components. However, these modelling steps are difficult and require corresponding knowledge. It is not easy for modellers to master all of the required knowledge. To alleviate this problem, a knowledge-based method is proposed to automatically determine hydrological model structures. First, modelling knowledge for process selection, algorithm identification, and component coupling is formalized in the formats of the Rule Markup Language (RuleML) and Resource Description Framework (RDF). Second, the formalized knowledge is applied to an inference engine to determine model structures. The method is applied to three hypothetical experiments and a real experiment. These experiments show how the knowledge-based method could support modellers in determining suitable model structures. The proposed method has the potential to reduce the knowledge burden on modellers and would be conducive to the promotion of integrated modelling frameworks.

1999 ◽  
Vol 39 (4) ◽  
pp. 55-60 ◽  
Author(s):  
J. Alex ◽  
R. Tschepetzki ◽  
U. Jumar ◽  
F. Obenaus ◽  
K.-H. Rosenwinkel

Activated sludge models are widely used for planning and optimisation of wastewater treatment plants and on line applications are under development to support the operation of complex treatment plants. A proper model is crucial for all of these applications. The task of parameter calibration is focused in several papers and applications. An essential precondition for this task is an appropriately defined model structure, which is often given much less attention. Different model structures for a large scale treatment plant with circulation flow are discussed in this paper. A more systematic method to derive a suitable model structure is applied to this case. Results of a numerical hydraulic model are used for this purpose. The importance of these efforts are proven by a high sensitivity of the simulation results with respect to the selection of the model structure and the hydraulic conditions. Finally it is shown, that model calibration was possible only by adjusting to the hydraulic behaviour and without any changes of biological parameters.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 872
Author(s):  
Vesna Đukić ◽  
Ranka Erić

Due to the improvement of computation power, in recent decades considerable progress has been made in the development of complex hydrological models. On the other hand, simple conceptual models have also been advanced. Previous studies on rainfall–runoff models have shown that model performance depends very much on the model structure. The purpose of this study is to determine whether the use of a complex hydrological model leads to more accurate results or not and to analyze whether some model structures are more efficient than others. Different configurations of the two models of different complexity, the Système Hydrologique Européen TRANsport (SHETRAN) and Hydrologic Modeling System (HEC-HMS), were compared and evaluated in simulating flash flood runoff for the small (75.9 km2) Jičinka River catchment in the Czech Republic. The two models were compared with respect to runoff simulations at the catchment outlet and soil moisture simulations within the catchment. The results indicate that the more complex SHETRAN model outperforms the simpler HEC HMS model in case of runoff, but not for soil moisture. It can be concluded that the models with higher complexity do not necessarily provide better model performance, and that the reliability of hydrological model simulations can vary depending on the hydrological variable under consideration.


Libri ◽  
2021 ◽  
Vol 71 (4) ◽  
pp. 375-387
Author(s):  
Seungmin Lee

Abstract A pidgin metadata framework based on the concept of pidgin metadata is proposed to complement the limitations of existing approaches to metadata interoperability and to achieve more reliable metadata interoperability. The framework consists of three layers, with a hierarchical structure, and reflects the semantic and structural characteristics of various metadata. Layer 1 performs both an external function, serving as an anchor for semantic association between metadata elements, and an internal function, providing semantic categories that can encompass detailed elements. Layer 2 is an arbitrary layer composed of substantial elements from existing metadata and performs a function in which different metadata elements describing the same or similar aspects of information resources are associated with the semantic categories of Layer 1. Layer 3 implements the semantic relationships between Layer 1 and Layer 2 through the Resource Description Framework syntax. With this structure, the pidgin metadata framework can establish the criteria for semantic connection between different elements and fully reflect the complexity and heterogeneity among various metadata. Additionally, it is expected to provide a bibliographic environment that can achieve more reliable metadata interoperability than existing approaches by securing the communication between metadata.


2015 ◽  
Vol 12 (2) ◽  
pp. 104-118 ◽  
Author(s):  
Frank T. Bergmann ◽  
Nicolas Rodriguez ◽  
Nicolas Le Novère

Summary Several standard formats have been proposed that can be used to describe models, simulations, data or other essential information in a consistent fashion. These constitute various separate components required to reproduce a given published scientific result.The Open Modeling EXchange format (OMEX) supports the exchange of all the information necessary for a modeling and simulation experiment in biology. An OMEX file is a ZIP container that includes a manifest file, an optional metadata file, and the files describing the model. The manifest is an XML file listing all files included in the archive and their type. The metadata file provides additional information about the archive and its content. Although any format can be used, we recommend an XML serialization of the Resource Description Framework.Together with the other standard formats from the Computational Modeling in Biology Network (COMBINE), OMEX is the basis of the COMBINE Archive. The content of a COMBINE Archive consists of files encoded in COMBINE standards whenever possible, but may include additional files defined by an Internet Media Type. The COMBINE Archive facilitates the reproduction of modeling and simulation experiments in biology by embedding all the relevant information in one file. Having all the information stored and exchanged at once also helps in building activity logs and audit trails.


Author(s):  
Christian Bizer ◽  
Maria-Esther Vidal ◽  
Michael Weiss

Sign in / Sign up

Export Citation Format

Share Document