scholarly journals Hydraulic characteristics of varying slope gradients, rainfall intensities and litter cover on vegetated slopes

2017 ◽  
Vol 49 (2) ◽  
pp. 506-516 ◽  
Author(s):  
Jiamei Sun ◽  
Dengxing Fan ◽  
Xinxiao Yu ◽  
Hanzhi Li

Abstract Litter produced by forests performs crucial functions in rainfall interception and soil conservation, particularly in the condition that larger raindrops formed by canopy accelerate soil erosion. To explore how forest litter exerts runoff hydrological characteristics and sediment yield processes, experiments on forest covered (Vitexnegundo var. heterophylla) slopes were conducted under various combinations of rainfall intensities and slope gradients. The results showed that litter reduced runoff yield rate by 9–31% and reduced sediment yield rate by 65–90%, with mean runoff and sediment reductions of 18% and 76% for all treatments. On forest covered slopes, Reynolds number and runoff power generally increased with the increase in both rainfall intensity and slope gradient. Litter layer reduced Reynolds number and runoff power with 8–29% and 56–80%, respectively. Darcy–Weisbach resistance coefficient decreased by increasing rainfall intensity and slope gradient. Litter layer increased Darcy–Weisbach resistance coefficient by three to nine times. Relationships between sediment yield rate and Reynolds number, runoff power, Darcy–Weisbach resistance coefficient were described by exponential, linear, power functions, respectively. The critical runoff power values for slopes with and without litter were 0.0027 and 0.0010 m/s, respectively. Reynolds number was the best hydrodynamic parameter for dynamic erosion characterizing.

2016 ◽  
Vol 64 (3) ◽  
pp. 237-245 ◽  
Author(s):  
Feng Qian ◽  
Dongbin Cheng ◽  
Wenfeng Ding ◽  
Jiesheng Huang ◽  
Jingjun Liu

Abstract Hydrological processes play important roles in soil erosion processes of the hillslopes. This study was conducted to investigate the hydrological processes and the associated erosional responses on the purple soil slope. Based on a comprehensive survey of the Wangjiaqiao watershed in the Three Gorges Reservoir, four typical slope gradients (5°, 10°, 15°and 20°) were applied to five rainfall intensities (0.6, 1.1, 1.61, 2.12 and 2.54 mm·min-1). The results showed that both surface and subsurface runoff varied greatly depending on the rainfall intensity and slope gradient. Surface runoff volume was 48.1 to 280.1 times of that for subsurface runoff. The critical slope gradient was about 10°. The sediment yield rate increased with increases in both rainfall intensity and slope gradient, while the effect of rainfall intensity on the sediment yield rate was greater than slope gradient. There was a good linear relationship between sediment yield rate and Reynolds numbers, flow velocity and stream power, while Froude numbers, Darcy-Weisbach and Manning friction coefficients were not good hydraulic indicators of the sediment yield rate of purple soil erosion. Among the three good indicators (Re, v and w), stream power was the best predictor of sediment yield rate (R2 = 0.884). Finally, based on the power regression relationship between sediment yield rate, runoff rate, slope gradient and rainfall intensity, an erosion model was proposed to predict the purple soil erosion (R2 = 0.897). The results can help us to understand the relationship between flow hydraulics and sediment generation of slope erosion and offer useful data for the building of erosion model in purple soil.


2011 ◽  
Vol 347-353 ◽  
pp. 2094-2097 ◽  
Author(s):  
Pei Qing Xiao ◽  
Wen Yi Yao ◽  
Chang Gao Wang

Runoff, sediment yield and infiltration process of shrub plots were studied under rainfall intensities of 45, 87 and 127 mm/h with 20° slope gradient using simulated rainfall experiment. The results showed that cumulative runoff and cumulative sediment yield of shrub plot had an obvious positive correlation with rainfall time. Under rainfall intensity of 45 mm/h, runoff and sediment yield of shrub plot kept a constant level. Under rainfall intensity of 87 mm/h, runoff kept a fluctuant increase, whereas sediment yield basically kept steady. Under rainfall intensity of 127 mm/h, runoff and sediment yield of shrub plot increased evidently due to the formation of erosion pits. Infiltration rate of shrub plot had a negative relation with runoff as well as sediment yield.


2019 ◽  
Vol 26 (31) ◽  
pp. 32559-32573
Author(s):  
Longzhou Deng ◽  
Liping Zhang ◽  
Xiaojuan Fan ◽  
Tianyu Sun ◽  
Kai Fei ◽  
...  

CATENA ◽  
2019 ◽  
Vol 172 ◽  
pp. 711-718 ◽  
Author(s):  
Jie Du ◽  
Jianzhi Niu ◽  
Zhaoliang Gao ◽  
Xiongwen Chen ◽  
Linus Zhang ◽  
...  

2011 ◽  
Vol 347-353 ◽  
pp. 2302-2307 ◽  
Author(s):  
Hong Xiang Wang ◽  
Yi Shi ◽  
Jian Ma ◽  
Cai Yan Lu ◽  
Xin Chen

A field experiment was conducted to study the characteristics of non-point source nitrogen (N) in the surface runoff from sloping croplands and the influences of rainfall and cropland slope gradient. The results showed that dissolved total N (DTN) was the major form of N in the runoff, and the proportion occupied by dissolved inorganic nitrogen (DIN) ranged from 45% to 85%. The level of NH4+-N was generally higher than the level of NO3--N, and averaged at 2.50 mg·L-1and 1.07 mg·L-1respectively. DIN was positively correlated with DTN (R2=0.962). Dissolved organic N (DON) presented a moderate seasonal change and averaged at 1.40 mg·L-1. Rainfall amount and rainfall intensity significantly affected the components of DTN in the runoff. With the increase of rainfall amount and rainfall intensity, the concentrations of DTN, NH4+-N and NO3--N presented a decreased trend, while the concentration of DON showed an increased trend. N loss went up with an increase in the gradient of sloping cropland, and was less when the duration was longer from the time of N fertilization.fertilization.


2002 ◽  
Vol 124 (2) ◽  
pp. 492-499 ◽  
Author(s):  
Michael P. Schultz

An experimental investigation has been carried out to document and relate the frictional resistance and roughness texture of painted surfaces smoothed by sanding. Hydrodynamic tests were carried out in a towing tank using a flat plate test fixture towed at a Reynolds number ReL range of 2.8×106−5.5×106 based on the plate length and freestream velocity. Results indicate an increase in frictional resistance coefficient CF of up to 7.3% for an unsanded, as-sprayed paint surface compared to a sanded, polished surface. Significant increases in CF were also noted on surfaces sanded with sandpaper as fine as 600-grit as compared to the polished surface. The results show that, for the present surfaces, the centerline average height Ra is sufficient to explain a large majority of the variance in the roughness function ΔU+ in this Reynolds number range.


2021 ◽  
Author(s):  
Justin Johnson ◽  
Jason Williams ◽  
Phillip Guertin ◽  
Steven Archer ◽  
Philip Heilman ◽  
...  

<p>Shrub encroachment of semiarid grasslands is influenced by connected runoff and erosion patterns that preferentially accumulate resources under vegetated patches (canopy microsites) and deplete interspaces. Soil loss from dryland hillslopes results when areas of bare ground become structurally and functionally connected through overland flow. Although these patterns have been well-described, uncertainty remains regarding how these feedbacks respond to restoration practices. This study compared the structure and hydrologic function of a shrub-encroached semiarid grassland treated five years prior with the herbicide, tebuthiuron, to that of an adjacent untreated grassland. Through a series of hydrologic experiments conducted at increasing spatial scales, vegetation and soil structural patterns were related to runoff and erosion responses. At a fine scale (0.5 m<sup>2</sup>), rainfall simulations (120 mm·h<sup>-1</sup> rainfall intensity; 45 min) showed herbicided shrub canopy microsites had greater infiltration capacities (105 and 71 mm·h<sup>-1</sup> terminal infiltration rates) and were less susceptible to splash-sheet erosion (3 and 26 g sediment yield) than untreated shrub canopy microsites, while interspaces were statistically comparable between study sites. Concentrated flow simulations at a coarse scale (~9 m<sup>2</sup>) revealed that gaps between the bases of vegetation (i.e. basal gaps) > 2 m<sup></sup>were positively related to both concentrated flow runoff (r = 0.72, p = 0.008) and sediment yield (r = 0.70, p = 0.012). Modeled hillslope-scale (50 m<sup>2</sup>) runoff and erosion (120 mm·h<sup>-1</sup> rainfall intensity; 45 min) indicated less soil loss in the tebuthiuron-treated site (1.78 Mg·ha<sup>-1</sup> tebuthiuron; 3.19 Mg·ha<sup>-1</sup> untreated), even though runoff was similar between sites. Our results suggest interspaces in shrub-encroached grasslands continue to be runoff sources following herbicide-induced shrub mortality and may be indicators of runoff responses at larger spatial scales. In contrast, sediment sources are limited post-treatment due to lesser sediment detachment from sheet-splash and concentrated flow processes. Reduced sediment supplies provide evidence that connectivity feedbacks that sustain a shrub-dominant ecological state may have been dampened post-treatment. Our study also highlights the utility of simple measures of structural connectivity, such as basal gaps, as an indicator of hillslope susceptibility to increased runoff and erosion.</p>


2020 ◽  
Vol 41 (2) ◽  
pp. 309-324
Author(s):  
Meghdad Jourgholami ◽  
Masoumeh Ahmadi ◽  
Farzam Tavankar ◽  
Rodolfo Picchio

Ground-based skidding operations can lead to soil compaction and displacement, which could cause negative effects on forest soil. Hence, some efforts such as forestry best management practices (BMPs) must be implemented in the prone area to mitigate these possible impacts. Several materials and treatments have been adopted to suppress these adverse effects by increasing the ground cover. However, the effects of mulch treatments on runoff and sediment yield are inconclusive with a diverse range of effectiveness. For these reasons, in this research mulch treatments were tested as to determine how the application of organic mulch amendments such as straw and leaf litter and contour-felled logs would alleviate the runoff and sediment yield on machine operating trails and ensure successful hillslope stabilization. The aims of the study were to analyse and compare the effectiveness of leaf litter (LM) and straw mulch (SM) rate and different distances of contour-felled logs (CFL) to mitigate the runoff and sediment yield, and examine the impact of rainfall intensity on effectiveness of litter mulch, straw mulch, and contour-felled logs. Totally, 30 bounded runoff plots in the machine operating trails and four treatments including litter mulch (LMR1: 0.62, LMR2: 1.24, and LMR3: 1.86 kg m-2), straw mulch (SMR1: 0.45, SMR2: 0.92, and SMR3: 1.34 kg m-2), contour-felled logs (CFL10: 10, CFL20: 20, and CFL30: 30 m), and untreated area were established in triplicate with 4 m width and 100 m length. During the study period, the runoff and sediment yield in the untreated trails (U) were 2.36 mm and 11.84 g m-2. Straw (from 41.5 to 60.6%) and litter mulch (from 38.1 to 55.1%), and contour-felled logs treatments (from 70.8 to 88.1%) significantly decreased the runoff, compared to U treatment. Results show that mulch treatments with three different levels of Litter Mulch Rate, LMR1, LMR2, and LMR3 decreased mean sediment by 46.6, 64.0 and 71.8%, in the treatments with three different levels of Straw Mulch Rate, SMR1, SMR2, and SMR3 decreased mean sediment by 42.9, 62.1, and 69.9%, and in the treatments with three different distances of Contour-Felled Logs, CFL10, CFL20, and CFL30 decreased mean sediment by 90.6, 94.7 and 88.3% comparing to U, respectively. The relationships of the runoff and sediment responses to increasing mulching rate of litter and straw followed as negative logarithmic curves, but the decreasing-increasing trends were observed in runoff and sediment yield as the distance between contour-felled logs increased from 10 to 30 m. Polynomial regression equations were developed for predicting the runoff and sediment yield as a function of the application rate of litter and straw mulch and the distance between contour-felled logs, and rainfall intensity. We concluded that contour-felled logs treatment was more effective than both litter and straw mulch to mitigate the runoff, runoff coefficient, and sediment yield on machine operating trails. As a management measure, it could be possible to propose that the contour-felled logs with a distance of 20 m be prescribed to protect the machine operating trails from the negative effects of surface waterflow.


Sign in / Sign up

Export Citation Format

Share Document