scholarly journals Groundwater vulnerability assessment using GIS-based DRASTIC method in the irrigated and coastal region of Sindh province, Pakistan

2018 ◽  
Vol 50 (1) ◽  
pp. 319-338 ◽  
Author(s):  
Asfandyar Shahab ◽  
Qi Shihua ◽  
Saeed Rad ◽  
Souleymane Keita ◽  
Majid Khan ◽  
...  

Abstract This study aims to evaluate the vulnerability of shallow aquifer in irrigated and coastal regions of Sindh province, Pakistan by applying DRASTIC method in geographical information system (GIS) environment. Vulnerability index values ranging from 119 to 200 were categorized into three contamination risk zones. Results illustrated that 28.03% of the total area that was distributed in the upper northern and southernmost coastal area of the province was very highly vulnerable to contamination, 56.76% of the area was highly vulnerable, while the remaining 15.21% area was in medium vulnerable zone. Single and multi-parameter sensitivity analysis evaluated the relative importance of each DRASTIC parameter and illustrated that depth to water table and net recharge caused the highest variation in the vulnerability index. Two water quality indicators parameters, i.e., electrical conductivity (EC) and nitrate ion (NO3−) were used to validate the DRASTIC index. The spatial distribution map of both parameters showed a certain level of similarity with the vulnerability map and both parameters illustrated significant correlation with the DRASTIC vulnerability index (p < 0.01). This signified that vulnerable zones are particularly more prone to EC and NO3− contamination. Findings of this study will assist local authorities in contamination prevention in the groundwater of the lower Indus Plain.

2020 ◽  
Vol 200 ◽  
pp. 02012
Author(s):  
Ignasius Loyola Setyawan Purnama ◽  
Vincentia Anindha Primacintya

Groundwater vulnerability to pollution refers to the ease with which pollutants reach groundwater, in other words indicating the level of ease of an area to experience pollution. At present, the theme is one of the themes that attracts many researchers because pollution is more frequent in an area. The purpose of this study is to assess groundwater vulnerability in the study area for pollution using the GOD method and conduct a study of 3 groundwater vulnerability assessments, to determine the most appropriate assessment to be applied in the study area. The method used to determine groundwater vulnerability to pollution is GOD, which uses three parameters to assess the vulnerability of groundwater, namely aquifer type, rock type above aquifer and groundwater level. Furthermore, the results of the vulnerability assessment using the GOD method are compared with the vulnerability assessment according to the SINTACS and DRASTIC methods that have been carried out before in this area. The results showed that the variation of groundwater vulnerability index values in the study area according to the GOD method was from 0.35 to 0.63. Locations that are classified as medium vulnerability are generally located in the limestone Sentolo Formation, while locations that are classified as high vulnerability class are located in the volcanic rock of Yogyakarta Formation. Noting the results of determining groundwater vulnerability from the three methods, it can be said that the three methods are suitable for assessing groundwater vulnerability in the study area. However, looking at the distribution pattern of the level of pollution, the DRASTIC method can provide more detailed results related to the level of vulnerability.


2015 ◽  
Vol 52 (2) ◽  
pp. 121-135 ◽  
Author(s):  
Sahajpreet Kaur Garewal ◽  
Avinash D. Vasudeo ◽  
Vishrut S. Landge ◽  
Aniruddha D. Ghare

Quality of groundwater is as important as quantity. For effective planning and management of groundwater resources, groundwater vulnerability assessment is most significant. The objective of the present study was to evaluate the groundwater vulnerable zones of Nagpur city, using Modified DRASTIC methods within a Geographical Information System (GIS) environment. DRASTIC method has been modified using land use/land cover parameter; weight of the parameters was modified using Analytical Hierarchy Process (AHP) and Analytical Network Process (ANP). Sensitivity analysis has been carried out to consider the most sensitive parameters. A new approach ANP was applied on DRASTIC for the first time to modify the weight of the parameters. Groundwater vulnerable zones obtained from the DRASTIC, Modified DRASTIC, Modified DRASTIC AHP and Modified DRASTIC ANP were compared and validated using field data of nitrate concentration. Results obtained from the Modified DRASTIC ANP are found to be well correlated with the nitrate concentration of the city and it is appropriate for assessment of groundwater vulnerable zones of Nagpur city. From this study it was found that the necessary remedial measures should be taken in the highly vulnerable zones of Nagpur city for further prevention of groundwater pollution.


2020 ◽  
Vol 53 (2E) ◽  
pp. 12-24
Author(s):  
Madyan Al-Gburi

Several studies and assessments have been conducted of areas exposed to pollution, especially areas that contain aquifer. The final extraction of the vulnerability map of the groundwater was constructed through the use of the DRASTIC method by applying the linear equation of the seven coefficients in the Arc GIS software program (Version 10.4). The aim of the study to assess aquifer vulnerability to pollution. Results, vulnerability map range between 75-126 (very low, low, and medium), the study area consists of very low and low vulnerability, except some areas medium vulnerability close to the center of the sub-basin in the standard vulnerability map (s) and 91-149 (very low, low, and medium) for the agriculture or pesticide vulnerability map (p), the medium vulnerability occupies a greater area the center of the sub-basin.


2018 ◽  
Vol 24 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Ismail Chenini ◽  
Adel Zghibi ◽  
Mohamed Haythem Msaddek ◽  
Mahmoud Dlala

Abstract The groundwater vulnerability assessment is normally applied to rural watersheds. However, urbanization modifies the hydrogeological processes. A modified DRASTIC model was adopted to establish a groundwater vulnerability map in an urbanized watershed. The modified DRASTIC model incorporated a land-use map, and net recharge was calculated taking into account the specificity of the urban hydrogeological system. The application of the proposed approach to the Mannouba watershed demonstrates that the groundwater vulnerability indexes range from 80 to 165. The study's results shows that 30 percent of the Mannouba watershed area has a high vulnerability index, 45 percent of the area has a medium index, and 25 percent of the study area has a low vulnerability index. To specify the effect of each DRASTIC factor on the calculated vulnerability index, sensitivity analyses were performed. Land use, topography, and soil media have an important theoretical weight greater than the effective weight. The impact of the vadose zone factor has the most important effective weight and affects the vulnerability index. The sensitivity assessment explored the variation in vulnerability after thematic layer removal. In this analysis, the removal of hydraulic conductivity and impact of vadose zone modified the vulnerability index. Groundwater vulnerability assessment in urbanized watersheds is difficult and has to consider the impact of urbanization in the hydrogeological parameters.


2021 ◽  
Vol 22 (6) ◽  
pp. 12-19
Author(s):  
Adel Satouh ◽  
Bousalsal Boualem ◽  
Smaine Chellat ◽  
Lahcen Benaabidate

Sign in / Sign up

Export Citation Format

Share Document