scholarly journals Application of temporal convolutional network for flood forecasting

2021 ◽  
Author(s):  
Yuanhao Xu ◽  
Caihong Hu ◽  
Qiang Wu ◽  
Zhichao Li ◽  
Shengqi Jian ◽  
...  

Abstract Rainfall–runoff modeling is a complex nonlinear time-series problem in the field of hydrology. Various methods, such as physical-driven and data-driven models, have been developed to study the highly random rainfall–runoff process. In the past 2 years, with the advancement of computing hardware resources and algorithms, deep-learning methods, such as temporal convolutional network (TCN), has been shown good prospects in time-series prediction tasks. The aim of this study is to develop a prediction model based on TCN structure to simulate the hourly rainfall–runoff relationship. We use two datasets in the Jingle and Kuye watersheds to test the model under different network structures and compare with the other four models. The results show that the TCN model outperforms the EIESM, artificial neural network, and long short-term memory and improves the flood forecasting accuracy at different foreseeable periods. It is shown that the TCN has a faster convergence rate and is an effective method for hydrological forecasting.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2392
Author(s):  
Antonello Rosato ◽  
Rodolfo Araneo ◽  
Amedeo Andreotti ◽  
Federico Succetti ◽  
Massimo Panella

Here, we propose a new deep learning scheme to solve the energy time series prediction problem. The model implementation is based on the use of Long Short-Term Memory networks and Convolutional Neural Networks. These techniques are combined in such a fashion that inter-dependencies among several different time series can be exploited and used for forecasting purposes by filtering and joining their samples. The resulting learning scheme can be summarized as a superposition of network layers, resulting in a stacked deep neural architecture. We proved the accuracy and robustness of the proposed approach by testing it on real-world energy problems.


2019 ◽  
Vol 57 (6) ◽  
pp. 114-119 ◽  
Author(s):  
Yuxiu Hua ◽  
Zhifeng Zhao ◽  
Rongpeng Li ◽  
Xianfu Chen ◽  
Zhiming Liu ◽  
...  

2020 ◽  
Author(s):  
Frederik Kratzert ◽  
Daniel Klotz ◽  
Sepp Hochreiter ◽  
Grey S. Nearing

Abstract. A deep learning rainfall-runoff model can take multiple meteorological forcing products as inputs and learn to combine them in spatially and temporally dynamic ways. This is demonstrated using Long Short Term Memory networks (LSTMs) trained over basins in the continental US using the CAMELS data set. Using multiple precipitation products (NLDAS, Maurer, DayMet) in a single LSTM significantly improved simulation accuracy relative to using only individual precipitation products. A sensitivity analysis showed that the LSTM learned to utilize different precipitation products in different ways in different basins and for simulating different parts of the hydrograph in individual basins.


2019 ◽  
Vol 23 (12) ◽  
pp. 5089-5110 ◽  
Author(s):  
Frederik Kratzert ◽  
Daniel Klotz ◽  
Guy Shalev ◽  
Günter Klambauer ◽  
Sepp Hochreiter ◽  
...  

Abstract. Regional rainfall–runoff modeling is an old but still mostly outstanding problem in the hydrological sciences. The problem currently is that traditional hydrological models degrade significantly in performance when calibrated for multiple basins together instead of for a single basin alone. In this paper, we propose a novel, data-driven approach using Long Short-Term Memory networks (LSTMs) and demonstrate that under a “big data” paradigm, this is not necessarily the case. By training a single LSTM model on 531 basins from the CAMELS dataset using meteorological time series data and static catchment attributes, we were able to significantly improve performance compared to a set of several different hydrological benchmark models. Our proposed approach not only significantly outperforms hydrological models that were calibrated regionally, but also achieves better performance than hydrological models that were calibrated for each basin individually. Furthermore, we propose an adaption to the standard LSTM architecture, which we call an Entity-Aware-LSTM (EA-LSTM), that allows for learning catchment similarities as a feature layer in a deep learning model. We show that these learned catchment similarities correspond well to what we would expect from prior hydrological understanding.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 66856-66866
Author(s):  
Liyan Xiong ◽  
Xiangzheng Ling ◽  
Xiaohui Huang ◽  
Hong Tang ◽  
Weimin Yuan ◽  
...  

2021 ◽  
Author(s):  
Linkai Wang ◽  
Jing Chen ◽  
Wei Wang ◽  
Ruofan Wang ◽  
Lina Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document