scholarly journals Open-source mobile water quality testing platform

2014 ◽  
Vol 4 (3) ◽  
pp. 532-537 ◽  
Author(s):  
Bas Wijnen ◽  
G. C. Anzalone ◽  
Joshua M. Pearce

The developing world remains plagued by lack of access to safe drinking water. Although many low-cost methods have been developed to treat contaminated water, low-cost methods for water-quality testing are necessary to determine if these appropriate technologies are needed, effective, and reliable. This paper provides a methodology for the design, development, and technical validation of a low-cost, open-source (OS) water testing platform. A case study is presented where the platform is developed to provide both the colorimetry for biochemical oxygen demand/chemical oxygen demand and nephelometry to measure turbidity using method ISO 7027. This approach resulted in equipment that is as accurate, but costs between 7.5 and 15 times less than current commercially available tools. It is concluded that OS hardware development is a promising solution for the equipment necessary to perform water quality measurements in both developed and developing regions.

2019 ◽  
Vol 6 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Murat Gökhan Eskin ◽  
Milad Torabfam ◽  
Meral Yüce ◽  
Hasan Kurt ◽  
Alessandra Cincinelli ◽  
...  

Water quality assessment is vital to identify existing problems and any changes that emerge in water sources over a period of time. Conventional water quality monitoring systems remain to be limited to on-site sample collection and further analysis in environmental laboratories. The progress in Arduino-based low-cost and open-source hardware has paved the way for the development of low-cost, portable, and on-site measuring platforms. In this work, we have assembled an Arduino-based open-source water testing platform out of commercially available sensors and controllers. The water testing system was powered by a 9 V battery and had the capability of measuring water turbidity, acidity, and temperature on-site in real-time. The calibration and validation studies were carried out to assess the measurement capabilities of turbidity and pH sensors in the lab using calibration samples and UV-Vis-NIR absorption spectroscopy. The water quality platform was tested in an artificial lake that is located at Sabanci University Campus (Istanbul, Turkey), which serves as a reservoir for treated wastewaters and rainwater. Untreated wastewater samples were collected from the wastewater treatment station of the university for comparison. The measurements performed on several locations along the coast of the artificial lake were also validated in the laboratory. The water testing platform showed significant potential for miniaturization and portability of such analytical platforms for on-site environmental monitoring.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 240 ◽  
Author(s):  
Carolina Bernardes ◽  
Ricardo Bernardes ◽  
Camille Zimmer ◽  
Caetano C. Dorea

There is a need for accessible and low-cost microbiological water quality testing in contexts where diarrheal illness is a major public health concern. In most cases, the quantification of Escherichia coli and other microbial indicators by conventional culture methods requires an incubation step for processed samples at specific temperatures for bacterial growth over a prescribed time. However, incubators can be the most expensive equipment required for such microbial analyses, limiting the number and scope of water quality testing available in low-resource contexts. In this study, a low-cost incubator was developed using a locally available expanded polystyrene (EPS) foam cooler, with two water bottles filled with hot water to heat incubator to a target of 35 °C. The EPS incubator performance was validated by processing 150 water samples in duplicates using the Colilert Quanti-tray/2000 system, incubated in either the EPS incubator or a standard laboratory incubator set at 35 °C. Statistically significant correlations of results indicated that the quantification of E. coli was comparable between both methods. Risk categorizations from standard and EPS incubation results agreed for 141 of 150 (94%) samples, with zero false negatives. In addition to being reasonably mobile the EPS incubator would reduce the cost of such water quality testing, thus potentially increasing the scope of water quality testing coverage.


2015 ◽  
Vol 71 (10) ◽  
pp. 1536-1544 ◽  
Author(s):  
P. de Rozari ◽  
M. Greenway ◽  
A. El Hanandeh

Constructed wetland ecotechnologies (CWEs) are a promising solution to effectively treat domestic wastewater in developing countries at low cost. This paper reports the findings of the effectiveness of sand media amended with woody biochar and two plants species (Melaleuca quinquenervia and Cymbopogon citratus) in removing biological oxygen demand (BOD5), suspended solids and coliforms. The experimental design consisted of 21 vertical flow (VF) mesocosms. There were seven media treatments using sand amended with varying proportions of biochar. During the first 8 months, the mesocosms were loaded with secondary clarified wastewater (SCW) then septage. The influent had a 4-day hydraulic retention time. Samples were monitored for BOD5, total suspended solids (TSS), total volatile solids (TVS), total coliforms and faecal coliforms. In the first 8 months, there were no significant performance differences between media treatments in the outflow concentrations of BOD5, TSS and TVS. The significant differences occurred during the last 3 months; using septage with biochar additions performed better than pure sand. For coliforms, the significant differences occurred after 6 months. In conclusion, the addition of biochar was not effective for SCW. The VF mesocosms system proved to be more effective in removing BOD5, TSS, TVS and coliforms when septage was loaded into the media.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6112
Author(s):  
Rafael Apolinar Bórquez López ◽  
Luis Rafael Martinez Cordova ◽  
Juan Carlos Gil Nuñez ◽  
Jose Reyes Gonzalez Galaviz ◽  
Jose Cuauhtemoc Ibarra Gamez ◽  
...  

Precision aquaculture is a new field that allows farmers to have better control over aquaculture processes, facilitating decision-making and improving efficiency. The implementation and evaluation of a low-cost water-quality monitoring system based on open-source hardware, which is easy to rebuild for scientific applications, is reported in this paper. The proposed system measures temperature, dissolved oxygen, and pH, taking records and sending information through a wireless protocol (ZigBee) to a graphical user interface which can display information numerically and graphically, as well as simultaneously storing the information in a database. These variables are very important for aquaculture, as they have a direct influence on critical culture parameters such as growth and survival. Although it is a low-cost system, it offers good quality data and demonstrates efficiency for its use in precision aquaculture.


2014 ◽  
Vol 23 (06) ◽  
pp. 1450079 ◽  
Author(s):  
PAWAN WHIG ◽  
SYED NASEEM AHMAD

In this paper, the design of an ASIC is presented that implement a low-cost system for the supervision of water quality in urban areas or rivers. Photo catalytic sensor (PCS) estimates the parameter biological oxygen demand (BOD) which is generally used to estimate quality of water. The system proposed in this paper involves a simple potentiometric approach that provides a correlation in the input–output signals of low-cost sensors. This approach which is more users friendly and fast in operation is obtained by modeling and optimization of sensor for water quality monitoring. This is to overcome several drawbacks generally found in the previous flow injection analysis method of determining chemical oxygen demand (COD)-like complex designing, nonlinearity and long computation time. The system constitutes a significant cost reduction in the supervision of water quality monitoring. The main reason of employing a readout circuit to PCS circuitry, is the fact that the fluctuation of O 2 influences the threshold voltage, which is internal parameter of the FET and can manifest itself as a voltage signal at output but as a function of the trans-conductance gain. The trans-conductance is a passive parameter and in order to derive voltage or current signal from its fluctuations the sensor has to be attached to readout circuit. This circuit provides high sensitivity to the changes in percentage of O 2 in the solution. In this design simple potentiometric approach with few passive components are used to build a readout circuit. The paper focuses on the electronic implementation of the readout system for the PCS which optimize the circuit performance and increases reliability.


Author(s):  
Emily F. Eidam ◽  
Theodore Langhorst ◽  
Evan B. Goldstein ◽  
McKenzie McLean

2016 ◽  
Vol 18 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Jeffrey M. Sadler ◽  
Daniel P. Ames ◽  
Rohit Khattar

Environmental data are critical to understanding environmental phenomena, yet their consistent collection and curation can be cost-prohibitive. This paper describes a recipe for the design, development, and deployment of a low-cost environmental data logging and transmission system for environmental sensors and its connection to an open source data-sharing network. The hardware is built using several low-cost, open-source, mass-produced components. The system automatically ingests data into HydroServer, a standards-based server in the open source hydrologic information system (HIS) created by the Consortium of Universities for the Advancement of Hydrologic Sciences Inc. (CUAHSI). By publishing data in this way, they are discoverable through the geographic information system (GIS)-based CUAHSI tools, HydroDesktop and HydroShare. In addition, because they follow WaterML encoding, open hardware data stored in the HIS can be included in international catalog such as the global earth observation system of system catalog. A recipe for building the system is provided. Multiple deployments used to test proof-of-concept of the system are described and their results are given. Ease of deployment and reliability of the logging and transmission system is also addressed.


Author(s):  
MD. Reza Ranjbar ◽  
Aisha H. Abdalla

<p>Due to the vast increase in global industrial output, rural to urban drift and the over-utilization of land and sea resources, the quality of water available to people has deteriorated greatly. Before the sensor based approach to water quality monitoring, water quality was tested by collecting the samples of water and experimentally analyzing it in the laboratories. However, in today, with time being a scarce resource, the traditional method of water quality testing is not efficient anymore. To tackle this issue, several electronic (microcontroller and sensor based) water quality monitoring systems were developed in the past decade. However, an in depth study of this current water quality testing technology shows that there are some limitations that should be taken into consideration. Therefore, an automatic, remote, and low cost water quality monitoring system has been developed. This system consists of a core microcontroller, multiple sensors, GSM module, LCD display screen, and an alarm subsystem. The quality of water is read from the physical world through the water quality testing sensors and sent to the microcontroller. The data is then analyzed by the microcontroller and the result is displayed on the LCD screen on the device. At the same time, another copy of the sensor readings is sent remotely to the user’s mobile phone in the form of SMS. If an abnormal water quality parameter is detected by any sensor, the alarm system will turn on the respective red LED for that parameter and the buzzer will give warning sound. At the same time, the abnormality of the water parameter is reported to the user through SMS. The system is aimed to be used for wide applications and by all categories of users. It can facilitate the process of water quality monitoring autonomously and with low cost; to help people improve their quality of drinking water, household water supplies and aquaculture farms, especially in rural areas where residents do not have access to standardized water supply and suffer from different diseases caused by contaminated water.</p>


2014 ◽  
Vol 898 ◽  
pp. 743-746
Author(s):  
Chun Long Li ◽  
Xian Xiang Chen ◽  
Zhen Fang ◽  
Jian Hua Tong ◽  
Hong Zhang ◽  
...  

This paper describes a software platform for water environment monitoring. The main monitored parameters are temperature, turbidity, PH, dissolved oxygen, chemical oxygen demand (COD), total phosphorus, total nitrogen, nitrogen ammonia (NH) and heavy metal such as Pb, Zn and Cu etc. This platform was designed using java language and java web technology, which are widely used in many software platforms including water environment monitoring. Low cost and lightweight framework are the major aspects of the software platform because free software (Tomcat and MySQL) and SSH framework are adopted in this software platform. People can view water quality data in a computer or a smart phone browser in the form of table and chart. The water quality data transmitted from General Packet Radio Service (GPRS) wireless network are stored into the MySQL database automatically once the software platform is started. Data collected by this platform is real-time, once a record is out of limits, a message will be sent to mobile phone. Through data collected, environment protection administrators can predict and get the conclusion whether the water is polluted or not.


Sign in / Sign up

Export Citation Format

Share Document