DEVELOPMENT OF ECONOMICAL ASIC FOR PCS FOR WATER QUALITY MONITORING

2014 ◽  
Vol 23 (06) ◽  
pp. 1450079 ◽  
Author(s):  
PAWAN WHIG ◽  
SYED NASEEM AHMAD

In this paper, the design of an ASIC is presented that implement a low-cost system for the supervision of water quality in urban areas or rivers. Photo catalytic sensor (PCS) estimates the parameter biological oxygen demand (BOD) which is generally used to estimate quality of water. The system proposed in this paper involves a simple potentiometric approach that provides a correlation in the input–output signals of low-cost sensors. This approach which is more users friendly and fast in operation is obtained by modeling and optimization of sensor for water quality monitoring. This is to overcome several drawbacks generally found in the previous flow injection analysis method of determining chemical oxygen demand (COD)-like complex designing, nonlinearity and long computation time. The system constitutes a significant cost reduction in the supervision of water quality monitoring. The main reason of employing a readout circuit to PCS circuitry, is the fact that the fluctuation of O 2 influences the threshold voltage, which is internal parameter of the FET and can manifest itself as a voltage signal at output but as a function of the trans-conductance gain. The trans-conductance is a passive parameter and in order to derive voltage or current signal from its fluctuations the sensor has to be attached to readout circuit. This circuit provides high sensitivity to the changes in percentage of O 2 in the solution. In this design simple potentiometric approach with few passive components are used to build a readout circuit. The paper focuses on the electronic implementation of the readout system for the PCS which optimize the circuit performance and increases reliability.

2012 ◽  
Vol 7 (4) ◽  
Author(s):  
B. R. de Graaf ◽  
F. Williamson ◽  
Marcel Klein Koerkamp ◽  
J. W. Verhoef ◽  
R. Wuestman ◽  
...  

For safe supply of drinking water, water quality needs to be monitored online in real time. The consequence of inadequate monitoring can result in substantial health risks, and economic and reputational damages. Therefore, Vitens N.V., the largest drinking water company of the Netherlands, set a goal to explore and invest in the development of intelligent water supply. In order to do this Vitens N.V. has set up a demonstration network for online water quality monitoring, the Vitens Innovation Playground (VIP). With the recent innovative developments in the field of online sensoring Vitens kicked off, in 2011, its first major online sensoring program by implementing a sensor grid based on EventLab systems from Optiqua Technologies Pte Ltd in the distribution network. EventLab utilizes bulk refractive index as a generic parameter for continuous real time monitoring of changes in water quality. Key characteristics of this innovative optical sensor technology, high sensitivity generic sensors at low cost, make it ideal for deployment as an early warning system. This paper describes different components of the system, the technological challenges that were overcome, and presents performance data and conclusions from deployment of Optiqua's EventLab systems in the VIP.


2019 ◽  
Author(s):  
Jeba Anandh S ◽  
Anandharaj M ◽  
Aswinrajan J ◽  
Karankumar G ◽  
Karthik P

2017 ◽  
Vol 20 (2) ◽  
pp. 85
Author(s):  
Pawan Whig ◽  
Syed Naseem Ahmad ◽  
Surinder Kumar

In this paper, a novel circuit is presented which overcome a serious limitation found in case of multiple sensors system. In this novel system design only one reference electrode and few active components used that makes the implementation of a low-cost system for the supervision of water quality. Photo Catalytic Sensor (PCS) estimates the parameter BOD (Biological Oxygen Demand) which is generally used to estimate quality of water. The system proposed in this paper involves a balanced bridge approach using few electronic components that provides a correlation in the input-output signals of low-cost sensors. The main reason of employing a readout circuit to PCS circuitry, is the fact that the fluctuation of O2 influences the threshold voltage, which is internal parameter of the FET and can manifest itself as a voltage signal at output but as a function of the trans conductance gain. The trans-conductance is a passive parameter and in order to derive voltage or current signal from its fluctuations the sensor has to be attached to readout circuit. This circuit provides high sensitivity to the changes in percentage of O2 in the solution.


Author(s):  
Ryan Ganesha Calibra ◽  
Irfan Ardiansah ◽  
Nurpilihan Bafdal

Water quality is very important for plant’s growth and development. Some of the important part of the water qualities are TDS(Total Dissolved Solid), EC(Electrical Conductivity), pH(Acidity). Cultivation inside a greenhouse provides some benefits but also have some deficiency, such as lack of soil nutrition because most plants inside greenhouse uses non soil growing media. To overcome the deficiency, An automated and remote system is needed to ease the controlling of water quality and nutrition feeding to the plant. This study aims to create low-cost greenhouse water quality monitoring that automatically display the real time data on a website. This research is done by using an engineering design methods. This system can be integrated with auto-pot watering system . The result shows that the system can adjust the TDS and pH as programmed, which are TDS= 1000-1200, and pH =5.5-6.5(these are recommended needs for Tomato plant). The TDS sensor in this reseach have the limitation of reading 0~1500ppm.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1984 ◽  
Author(s):  
Thanda Thatoe Nwe Win ◽  
Thom Bogaard ◽  
Nick van de Giesen

Newly developed mobile phone applications in combination with citizen science are used in different fields of research, such as public health monitoring, environmental monitoring, precipitation monitoring, noise pollution measurement and mapping, earth observation. In this paper, we present a low-cost water quality mobile phone measurement technique combined with sensor and test strips, and reported the weekly-collected data of three years of the Ayeyarwady River system by volunteers at seven locations and compared these results with the measurements collected by the lab technicians. We assessed the quality of the collected data and their reliability based on several indicators, such as data accuracy, consistency, and completeness. In this study, six local governmental staffs and one middle school teacher collected baseline water quality data with high temporal and spatial resolution. The quality of the data collected by volunteers was comparable to the data of the experienced lab technicians for sensor-based measurement of electrical conductivity and transparency. However, the lower accuracy (higher uncertainty range) of the indicator strips made them less useful in the Ayeyarwady with its relatively small water quality variations. We showed that participatory water quality monitoring in Myanmar can be a serious alternative for a more classical water sampling and lab analysis-based monitoring network, particularly as it results in much higher spatial and temporal resolution of water quality information against the very modest investment and running costs. This approach can help solving the invisible water crisis of unknown water quality (changes) in river and lake systems all over the world.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1096 ◽  
Author(s):  
Ramón Martínez ◽  
Nuria Vela ◽  
Abderrazak el Aatik ◽  
Eoin Murray ◽  
Patrick Roche ◽  
...  

The deteriorating water environment demands new approaches and technologies to achieve sustainable and smart management of urban water systems. Wireless sensor networks represent a promising technology for water quality monitoring and management. The use of wireless sensor networks facilitates the improvement of current centralized systems and traditional manual methods, leading to decentralized smart water quality monitoring systems adaptable to the dynamic and heterogeneous water distribution infrastructure of cities. However, there is a need for a low-cost wireless sensor node solution on the market that enables a cost-effective deployment of this new generation of systems. This paper presents the integration to a wireless sensor network and a preliminary validation in a wastewater treatment plant scenario of a low-cost water quality monitoring device in the close-to-market stage. This device consists of a nitrate and nitrite analyzer based on a novel ion chromatography detection method. The analytical device is integrated using an Internet of Things software platform and tested under real conditions. By doing so, a decentralized smart water quality monitoring system that is conceived and developed for water quality monitoring and management is accomplished. In the presented scenario, such a system allows online near-real-time communication with several devices deployed in multiple water treatment plants and provides preventive and data analytics mechanisms to support decision making. The results obtained comparing laboratory and device measured data demonstrate the reliability of the system and the analytical method implemented in the device.


2020 ◽  
Author(s):  
Elisa Coraggio ◽  
Dawei Han ◽  
Theo Tryfonas ◽  
Weiru Liu

<p>Water resources management is a delicate, complex and challenging task. It involves monitoring quality, quantity, timing and distribution of water in order to meet the needs of the population’s usage demand. Nowadays these decisions have to be made in a continuously evolving landscape where quantity and quality of water resources change in time with uncertainty.</p><p>Throughout history, access to clean water has always been a huge desire from urban settlements. People built towns and villages close to water sources. In most cases, streams brought clean water in and washed away polluted water. Nowadays the largest strains on water quality typically occur within urban areas, with degradation coming from point and diffuse sources of pollutants and alteration of natural flow through built-up areas.</p><p>Municipalities are acting to reduce the impact of climate change on existing cities and meet the needs of the growing urban population. In many places around the world costal flood defences were built involving construction of barriers that lock the tide and keep the water coming from in-land rivers creating reservoirs close to the shore.</p><p>These man-made barriers stop the natural cleaning action of the tide on transitional waters. This causes severe water quality problems like eutrophication and high levels of bacteria. On the positive side, these water reservoirs are used as recreational water, drinking water, agricultural water. As many more people are moving to live in urban areas, its overall demand for clean water and discharge of polluted water is constantly growing. Hence monitoring and foreseeing water quality in these urban surface waters is fundamental in order to be able to meet the water demand in future scenarios.</p><p>Many cities have already successfully implemented smart water technologies in many types of the water infrastructures. Monitoring water quality has always been a challenging and costly task. It has been so far the most difficult water characteristic to monitor remotely in real time. Lack of high frequency and accurate data has always been one of the main challenges. Today, using information and communication technologies (ICT) is possible to set up a real time water quality monitoring system that will allow to deepen the understanding of water quality dynamics leading to a better management of urban water resources.</p><p>A case study will be presented where a real time water quality monitoring system for the surface water of Bristol Floating Harbour has been deployed in the UK and water quality data have been analysed using artificial intelligence algorithms in order to understand the link between ambient weather data (i.e., precipitation, temperature, solar radiation, wind, etc.) and surface water pollution. Preliminary results of a water quality prediction model will also be presented showing the capabilities of predicting water quality as a new tool in municipality’s decision-making processes and water resources management.</p>


2021 ◽  
Vol 26 ◽  
Author(s):  
Diego Mendez-Chaves ◽  
Manuel Perez ◽  
Alejandro Farfan ◽  
Eduardo Gerlein

In order to properly monitor the health status of the hydrological resources of a region, in terms of water contamination, a scalable and low-cost system is necessary to map the water quality at different locations and allow the prioritization of more sophisticated and expensive monitoring campaigns on those areas where a suspicious behavior seems to be occurring. This paper presents the design and implementation process of such an IoT-based solution for low-cost and scalable water quality monitoring applications. To achieve that end, we propose the utilization of a low-cost inter-digital capacitance (IDC) sensor to characterize the conductivity of the water, a very telling parameter about the level of pollution in the water. Additionally, an embedded method to measure such sensor was designed and implemented, which considers the requirements of a portable platform: low computational capabilities, small memory and low power consumption. Our results show that an IDC sensor is capable of detecting the changes of the capacitance of the sample, and therefore mapping the changes in the conductivity of the water. Additionally, integrating an embedded measuring method is a valid option for in-situ characterization of water samples and the complete solution enables a new paradigm for water quality monitoring in large scale scenarios.


Sign in / Sign up

Export Citation Format

Share Document