scholarly journals Wavelet-based analysis of global index effects in air temperature and precipitation data of the Black Sea coast

2018 ◽  
Vol 10 (2) ◽  
pp. 402-418
Author(s):  
Turgay Partal ◽  
Cenk Sezen

Abstract This study has been carried out to analyse the precipitation and air temperature data in the Black Sea region of Turkey to aid the understanding of the effects of global indices. Connections between the temperature or precipitation data and global atmospheric indices such as the North Sea Caspian Pattern (NCP), the Southern Oscillation Index (SOI) or the North Atlantic Oscillation (NAO) were studied. Results of the cross-correlations between air temperature and the NCP/NAO showed a strong relationship, especially in the winter period. The seasonal and annual differences for the temperature and precipitation data during the negative and positive phases of the global indices were computed. According to this, the annual total precipitations are higher during the positive NCP index than the negative NCP index, while the annual total precipitations are higher during the negative NAO index than the positive NAO index. On the other hand, wavelet analysis showed that some short-term periodicities in precipitation and temperature data are connected with the NAO and the extreme phases of the SOI. The influence of the NCP should also be considered for the short-term periodicities of the temperatures.

Author(s):  
B. N. Panov ◽  
E. O. Spiridonova ◽  
◽  

Russian fishermen harvest European anchovy primarily off the Black Sea coast of the Krasnodar Territory during its wintering and wintering migrations. At wintering grounds, temperature conditions become a secondary factor in determining the behaviour of commercial concentration of European anchovy, with wind and currents being the primary factors. Therefore, the aim of this work is to determine the potential use of daily data on water circulation and local atmospheric transport in short-term (1–7 days) forecasting of European anchovy fishing in the Black Sea. The research used the European anchovy fishery monitoring materials for January – March 2019, as well as daily maps of the Black and Azov Seas level anomalies (from satellite altimetry data) and surface atmospheric pressure and temperature in Europe (analysis) for the mentioned period. The dynamics of the catch rate and its relation to altimetry and atmospheric transport indicators in the north-eastern part of the Black Sea were investigated using graphical and correlation methods. This analysis showed that the main factor contributing to increased catches is intensification of northwest currents in the coastal 60-km zone. The effect of atmospheric transport on fishing efficiency depends on the mesoscale eddy structure of the nearshore current field. In the presence of an intense northwest current in the fishing area, southwest atmospheric transports have a positive effect on fishing, while in the presence of an anticyclonic meander of currents, northeast atmospheric transports become effective. The presence of maximum significant relationships when the determinants of fishing performance are shifted by 1–7 days allows making short-term predictions of fishing efficiency.


2021 ◽  
Author(s):  
Elena Vyshkvarkova ◽  
Olga Sukhonos

Abstract The spatial distribution of compound extremes of air temperature and precipitation was studied over the territory of Eastern Europe for the period 1950–2018 during winter and spring. Using daily data on air temperature and precipitation, we calculated the frequency and trends of the four indices – cold/dry, cold/wet, warm/dry and warm/wet. Also, we studying the connection between these indices and large-scale processes in the ocean-atmosphere system such as North Atlantic Oscillation, East Atlantic Oscillation and Scandinavian Oscillation. The results have shown that positive trends in the region are typical of the combinations with the temperatures above the 75th percentile, i.e., the warm extremes in winter and spring. Negative trends were obtained for the cold extremes. Statistically significant increase in the number of days with warm extremes was observed in the northern parts of the region in winter and spring. The analysis of the impacts of the large-scale processes in oceans-atmosphere system showed that the North Atlantic Oscillation index has a strong positive and statistically significant correlation with the warm indices of compound extremes in the northern part of Eastern Europe in winter, while the Scandinavian Oscillation shows the opposite picture.


2012 ◽  
Vol 16 (5) ◽  
pp. 1389-1399 ◽  
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation. In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period. Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index. Although the effects of the North Atlantic Oscillation (NAO) had already been demonstrated in the long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results of this study allow for the establishment of a link between a large-scale atmospheric cycle and the groundwater recharge of carbonate karst aquifers. Consequently, the winter NAO index could also be considered as a proxy to forecast the decadal variability of groundwater flow in Mediterranean karst areas.


2008 ◽  
Vol 13 (1) ◽  
pp. 77-88
Author(s):  
Jerzy Boryczka ◽  
Maria Stopa-Boryczka ◽  
Bohdan Mucha

Abstract The paper describes tendencies in changes of air temperature in Poland and Ukraine on the basis of a long series of measurements made in Warsaw (1779–2000), Cracow (1826–2000), Lviv (1824–2002) and Kiev (1812–2002). Air temperature in these cities in the years 1825–2002 is positively correlated with the North Atlantic Oscillation (NAO) Index. Values of the r correlation coefficient are much higher in winter months than during the summer and they decrease with distance from the Atlantic Ocean. Of interest are air temperature changes in Warsaw, Cracow, Lviv and Kiev in the XIXth –XXth centuries together with forecasts until the year 2100. Significant dependence of the climate of Poland and Ukraine on the NAO index stems from similar temperature cycles and the eight-year, eleven-year and one-hundred-year NAO index. Forecast credibility results from the similar periodicity of air temperature, the NAO index and solar activity. The forecast mean annual temperature values for 2001–2100 were obtained from the interference of statistically important temperature cycles, determined by the sinusoidal regression method.


2011 ◽  
Vol 8 (6) ◽  
pp. 11233-11275
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Climate change is one of the issues most debated by the scientific community with a special focus to the combined effects of anthropogenic modifications of the atmosphere and the natural climatic cycles. Various scenarios have been formulated in order to forecast the global atmospheric circulation and consequently the variability of the global distribution of air temperature and rainfall. The effects of climate change have been analysed with respect to the risks of desertification, droughts and floods, remaining mainly limited to the atmospheric and surface components of the hydrologic cycle. Consequently the impact of the climate change on the recharge of regional aquifers and on the groundwater circulation is still a challenging topic especially in those areas whose aqueduct systems depend basically on springs or wells, such as the Campania region (Southern Italy). In order to analyse the long-term climatic variability and its influence on groundwater circulation, we analysed decadal patterns of precipitation, air temperature and spring discharges in the Campania region (Southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, in the period from 1921 to 2010, choosing 18 rain gauges and 9 air temperature stations among those with the most continuous functioning as well as arranged in a homogeneous spatial distribution. Moreover, for the same period, we gathered the time series of the winter NAO index (December to March mean) and of the discharges of the Sanità spring, belonging to an extended carbonate aquifer (Cervialto Mount) located in the central-eastern area of the Campania region, as well as of two other shorter time series of spring discharges. The hydrogeological features of this aquifer, its relevance due to the feeding of an important regional aqueduct system, as well as the unique availability of a long-lasting time series of spring discharges, allowed us to consider it as an ideal test site, representative of the other carbonate aquifers in the Campania region. The time series of regional normalised indexes of mean annual precipitation, mean annual air temperature and mean annual effective precipitation, as well as the time series of the normalised annual discharge index were calculated. Different methods were applied to analyse the time series: long-term trend analysis, through smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes has highlighted long-term complex periodicities, strongly correlated with the winter NAO index. Moreover, we also found robust correlations among precipitation indexes and the annual discharge index, as well as between the latter and the NAO index itself. Although the effects of the North Atlantic Oscillation had already been proved on long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results obtained appear original because they establish a link between a large-scale atmospheric cycle and the groundwater circulation of regional aquifers. Therefore, we demonstrated that the winter NAO index can be considered as an effective proxy to forecast the decadal variability of groundwater circulation in Mediterranean areas and in estimating critical scenarios for the feeding of aqueduct systems.


2020 ◽  
pp. 105-114
Author(s):  
Yu. S. Tuchkovenko ◽  
O. S. Matygin ◽  
V. Yu. Chepurna

Increasing the draught of ships that may be accepted by ports for loading at their loading berths is one of the main tasks aimed at development and freight turnover enhancement of sea trade ports located in Odesa Region of the north-western part of the Black Sea (cities of Chornomorsk, Odesa and Pivdennyi). An operational forecasting of short-term sea level fluctuations caused by storm winds presents a critical task for ensuring safe navigation across the ports’ water area and approach channels. The article is devoted to analysing and discussing the results of tests of a simplified 2D hydrodynamic model designed for forecasting such phenomena as upsurge and downsurge of the sea level caused by storm winds in the vicinity of sea ports in Odesa Region of the north-western part of the Black Sea. Spatio-temporal variability of wind conditions at the sea-to-atmosphere boundary was set based on the data retrieved from a 10-day synoptic forecast using global atmospheric prediction model GFS (Global Forecast System). The study analyses the results of forecast of significant (the ones exceeding 30 cm) short-term sea level drops and rises at the ports which were observed in 2016, 2017 and 2020. It was established that, in case of use of the GFS forecast data, the pattern of sea level denivellations caused by storm winds and their amplitude in the majority of events start approximating to the observed values provided the forecast has a 4-day lead time. Therefore the accuracy of wind conditions variability forecast with application of the GFS model having a longer lead advance time is not sufficient for forecasting the sea level fluctuations caused by storm winds.  The study made it possible to get an acceptable equivalence between the values of sea level denivellation amplitudes which were forecast with a 1-to-3-day lead time and the ones observed afterwards. In particular, when the forecast lead time is equal to »2 days, in relation to the expected storm conditions, the average absolute error for the forecast of sea level fluctuations amplitude constituted 7-8 cm, while its permissible value was defined as 15 cm, and the average relative error – 16-18%. It allowed making a conclusion that a hydrodynamic model option, applied alongside with the forecasting information on wind conditions variability retrieved with the help of the GFS weather prediction model, may be used for operational forecasting of short-term sea level fluctuations caused by storm winds with the forecast lead time of up to 4 days.


2021 ◽  
Vol 2 ◽  
pp. 138-146
Author(s):  
V.K. Smakhtin ◽  

Assessment of changes in air temperature and precipitation in Transbaikalia/ Smakhtin V.K. // Hydrometeorological Research and Forecasting, 2021, no. 2 (380), pp. 138-146. The paper analyzes long-term fluctuations in average air temperature and annual total precipitation in Transbaikalia. Between 1951 and 2020, air temperature increased by 2.3 °C according to 40 weather stations. Warming is mainly manifested in the air temperature rise in February, March and April. From 1955 to 2017, the decrease in annual total precipitation was 56 mm in the Amur basin and 39 mm in the Yenisei basin. The trends are reliable at the 5% significance level. In the Lena basin, annual total precipitation during the mentioned period increased by 7 mm, the trend is not reliable at the 5% significance level. The high-water phase has been observed since 2017. Taking into account that two previous high-water phases lasted 16‒17 years, it may be supposed that a risk of precipitation above the normal will be kept in the next 13–14 years. Keywords: climate change, air temperature, precipitation, phases of water content, trendsRef. 81.


Sign in / Sign up

Export Citation Format

Share Document