An Introduction to Advanced Oxidation Processes (AOP) for Destruction of Organics in Wastewater

1992 ◽  
Vol 27 (1) ◽  
pp. 1-22 ◽  
Author(s):  
J. H. Carey

Abstract Various processes that have been suggested for the oxidation of organic compounds in wastewater are summarized. The most widely applicable are based on generation of hydroxyl radicals via the photolysis of hydrogen peroxide, ozone and titanium dioxide. Other methods of generating hydroxyl radicals and other oxidants, as well as other methods of oxidation that have been suggested for organic wastewater treatment are also discussed.

2013 ◽  
Vol 39 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Barbara Pieczykolan ◽  
Izabela Płonka ◽  
Krzysztof Barbusiński ◽  
Magdalena Amalio-Kosel

Abstract Treatment of leachate from an exploited since 2004 landfill by using two methods of advanced oxidation processes was performed. Fenton’s reagent with two different doses of hydrogen peroxide and iron and UV/H2O2 process was applied. The removal efficiency of biochemically oxidizable organic compounds (BOD5), chemically oxidizable compounds using potassium dichromate (CODCr) and nutrient (nitrogen and phosphorus) was examined. Studies have shown that the greatest degree of organic compounds removal expressed as a BOD5 index and CODCr index were obtained when Fenton’s reagent with greater dose of hydrogen peroxide was used - efficiency was respectively 72.0% and 69.8%. Moreover, in this case there was observed an increase in the value of ratio of BOD5/CODCr in treated leachate in comparison with raw leachate. Application of Fenton’s reagent for leachate treatment also allowed for more effective removal of nutrients in comparison with the UV/H2O2 process.


2018 ◽  
Vol 45 ◽  
pp. 00046
Author(s):  
Jacek Leszczyński ◽  
Jolanta Walery Maria

In this study, the application of ozonation and ozonation with hydrogen peroxide processes for landfill leachate treatment was investigated. The effluents were characterized by COD 710 mgO2/dm3 and BOD5 72 mg O2/dm3. According to the adopted indicators, the determined BOD/COD ratio of 0.1 in raw leachates indicates a stabilized landfill. Ozone was applied at doses of 0.15 - 0.6 gO3/dm3, and hydrogen peroxide at such doses to keep the weight ratios of H2O2/O3 0.4 - 1.6. The maximum COD and UV absorbance removal was respectively 29% and 51% by applying a high ozone dose of 0.6 gO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.3. It has been shown that by using hydrogen peroxide in ozonation, organic compounds expressed as COD can be efficiently removed from the effluents. The best conditions for the H2O2/O3 process were obtained with a H2O2/O3 ratio of 0.8 and ozone dose of 0.6 gO3/dm3. Under these conditions, the removal efficiency of COD was 46%.


Author(s):  
Ali Safarzadeh-Amiri ◽  
James R. Bolton ◽  
Stephen R. Cater

AbstractThe oxidation of organic compounds by Fe(II)/H


Chemosphere ◽  
2021 ◽  
pp. 130104
Author(s):  
Dengsheng Ma ◽  
Huan Yi ◽  
Cui Lai ◽  
Xigui Liu ◽  
Xiuqin Huo ◽  
...  

2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Rudi Nugroho ◽  
Ikbal Mahmud

An experiment of advanced oxydation processes (AOPs) was applicated in textile wastewater treatment for color removal. The experiment was conducted in laboratory scale using ozon and hydrogen peroxide as oxidizing agents. The textile wastewater contains any organic and inorganic dyes that could not be effective treated by coagullation and and sedimentation as well as by conventional aerobic treatments. Result of the experiments concluded that the AOPs technologies could be applied effectively for removal of color. Addition of hydrogen peroxide with volume of 0.25 ml for 1 liter of wastewater exhibits the reaction. The reaction of AOPs for color removal was optimum at temperatur of 70oC. As higher as pH, the reaction become faster and the efficiency of color removal become higher.   Key words:  advanced oxidation processes, color removal, hydrogen peroxide, ozon, 


Author(s):  
Ahmed Hisham Hilles ◽  
Salem S. Abu Amr ◽  
Hamidi Abdul Aziz ◽  
Mohammed J. K. Bashir

Advanced oxidation processes (AOPs) have recently received attraction for treatment of different wastewaters. AOPs have an ability to oxidize a high quantity of refractory organic matters, traceable organic, or to increase wastewater biodegradability as a pre-treatment prior to an ensuing biological treatment. In this chapter, the fundamental mechanisms of different AOPs such as ozonation, hydrogen peroxide, UV, persulfate, and Fenton oxidation are summarized. The combination of different oxidation processes such as O3/H2O2, O3/UV, O3/Fenton+, O3/persulfate are evaluated. Several persulfate activation techniques are also summarized.


2013 ◽  
Vol 10 (3) ◽  
pp. 376-385 ◽  

Advanced oxidation processes (AOPs) are widely used for the removal of recalcitrant organic constituents from industrial and municipal wastewater. The aim of this study was to review the use of titanium dioxide/UV light process, hydrogen peroxide/UV light process and Fenton’s reactions in wastewater treatment. The main reactions and the operating parameters (initial concentration of the target compounds, amount of oxidation agents and catalysts, nature of the wastewater etc) affecting these processes are reported, while several recent applications to wastewater treatment are presented. The advantages and drawbacks of these methods are highlighted, while some of the future challenges (decrease of operational cost, adoption of strategies for processes integration) are discussed.


Sign in / Sign up

Export Citation Format

Share Document