Integrated operation of drinking water treatment plant at Amsterdam water supply

2004 ◽  
Vol 4 (5-6) ◽  
pp. 263-270 ◽  
Author(s):  
Th.G.J. Bosklopper ◽  
L.C. Rietveld ◽  
R. Babuska ◽  
B. Smaal ◽  
J. Timmer

Water treatment plants are in general robust and designs are based on the performance of individual processes with pre-set boundary conditions. It is assumed that an integral approach of the entire treatment plant can lead to more efficient operation. Taking into account the developments in sensoring, automation and computation, it is a challenge to improve quality and reliability of the treatment plants and to make maximal use of the installed infrastructure, postponing new investments. At Amsterdam Water Supply (AWS), the first steps have been taken to come to an integral dynamic model of the total water treatment plant and the use of this model as an instrument for integral control. The parameters influencing the performance of the water treatment process will be incorporated in an overall model evaluating the goal factors quality (good, constant and reliable), quantity, costs, environmental impact (low residuals level), redundancy and flexibility. For several individual processes at AWS models have already been developed during the last few years, like models for the ozone process, biological activated carbon filtration and pellet softening. For the final calibration and validation pilot reactors are automated and on-line data are collected. Criteria for evaluation are developed to realise an optimal control of the individual processes in interaction with the goal factors of the total treatment process.

2016 ◽  
Vol 16 (4) ◽  
pp. 922-930 ◽  
Author(s):  
L. Richard ◽  
E. Mayr ◽  
M. Zunabovic ◽  
R. Allabashi ◽  
R. Perfler

The implementation and evaluation of biological nitrification as a possible treatment option for the small-scale drinking water supply of a rural Upper Austrian community was investigated. The drinking water supply of this community (average system input volume: 20 m3/d) is based on the use of deep anaerobic groundwater with a high ammonium content of geogenic origin (up to 5 mg/l) which must be treated to prevent the formation of nitrites in the drinking water supply system. This paper describes the implementation and operation of biological nitrification despite several constraints including space availability, location and financial and manpower resources. A pilot drinking water treatment plant, including biological nitrification implemented in sand filters, was designed and constructed for a maximum treatment capacity of 1.2 m3/h. Online monitoring of selected physicochemical parameters has provided continuous treatment performance data. Treatment performance of the plant was evaluated under standard operation as well as in the case of selected malfunction events.


Author(s):  
Nguyet Thi-Minh Dao ◽  
The-Anh Nguyen ◽  
Viet-Anh Nguyen ◽  
Mitsuharu Terashima ◽  
Hidenari Yasui

The occurrence of pesticides even at low concentrations in drinking water sources might induce potential risks to public health. This study aimed to investigate the removal mechanisms of eight pesticides by the nitrifying expanded-bed filter using biological activated carbon media at the pretreatment of a drinking water plant. The field analysis demonstrated that four pesticides Flutolanil, Buprofezin, Chlorpyrifos, and Fenobucard, were removed at 82%, 55%, 54%, and 52% respectively, while others were not significantly removed. Under controlled laboratory conditions with continuous and batch experiments, the adsorption onto the biological activated carbon media was demonstrated to be the main removal pathway of the pesticides. The contribution of microorganisms to the pesticide removals was rather limited. The pesticide removals observed in the field reactor was speculated to be the adsorption on the suspended solids presented in the influent water. The obtained results highlighted the need to apply a more efficient and cost-effective technology to remove the pesticide in the drinking water treatment process. Keywords: biological activated carbon; drinking water treatment; nitrifying expanded-bed filter; pesticide removal.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 173-180 ◽  
Author(s):  
I. Kasuga ◽  
D. Shimazaki ◽  
S. Kunikane

The influence of backwashing on the biofilm community developed on biological activated carbon (BAC) used in a drinking water treatment plant was investigated by means of bacterial cell enumeration and terminal-restriction fragment length polymorphism (T-RFLP) fingerprinting analysis of bacterial and eukaryotic ribosomal RNA genes (rDNA). After backwashing, the attached bacterial abundance in the top layer of the BAC bed decreased to 64% of that before backwashing. The community level changes caused by backwashing were examined through the T-RFLP profiles. In the bacterial 16S rDNA analysis, the relative abundances of some terminal-restriction fragments (T-RFs) including the Planctomycetes-derived fragment increased; however, the relative abundances of some T-RFs including the Betaproteobacteria-derived fragments decreased. In the eukaryotic 18S rDNA analysis, the relative abundances of some T-RFs including the protozoan Cercozoa-derived fragments increased; however, the relative abundances of some T-RFs including the metazoan Chaetonotus- and Paratripyla-derived fragments decreased. The T-RFLP analysis suggests that backwashing can cause changes in the relative compositions of microorganisms in a BAC biofilm in the top layer of the bed.


2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Taty Hernaningsih

Techno Park regional development in order to increase regional competitiveness based on innovation and knowledge (konwledge based economy) requires infrastructure that can meet basic human needs, such as drinking water supply for the community. Techno Park region Pelalawan, Riau province located in the peat so that most of the water source is brownish and contains peat. While surface water sources such as rivers Kampar located far from the region. Therefore, to overcome the problems of water supply for the people who will live in the region need to be prepared water supply planning. Early stages of development is focused on the areas of education and research zone so that planning for water supply will also be prioritized in both these zones. Has calculated the drinking water needs based on projected population and  water demand standard in these locations. Planning of water treatment plant will conduct  in  5 stages yearly so that development is more economic with design capacity of 5 l / sec in 2033. Alternative sources of raw water are from Kampar river or groundwater that is used if transmission pipeline from the Kapuas river has not ben constructed. Technology of drinking water treatment with ultrafiltration processes that are environmentally friendly will be applied to meet the water needs of society. Transmission pipelines is planned of 15 inches diameter laying in parallel with lane highway from Kampar River ( location intake BPAB ) to the water treatment plant in the education zone . Keywords : Techno park region, water supply planning, ultrafiltrasi, peat area.


2017 ◽  
Vol 18 (4) ◽  
pp. 1261-1269
Author(s):  
Zhiling Wu ◽  
Hongbin Chen

Abstract Invertebrate removal by traditional biological activated carbon (tra-BAC) and pre-BAC treatment processes was investigated in a full-scale water treatment plant. The results showed that invertebrate reproduction occurred in both BAC filters, but the invertebrate abundance in the finished water processed by tra-BAC was about 15 times greater than that processed using the pre-BAC process. In the pre-BAC process, the sand filter was placed after the BAC filter, and sand filtration removed most of the invertebrates, with an average removal efficiency of 91.1%. However, the pre-BAC filter, which was positioned behind the sedimentation tank, needed to be backwashed more frequently than the tra-BAC filter because of the high turbidity of the inlet water. The frequent backwashing reduced the biomass on the activated carbon and decreased the invertebrate reproductive rate. The results of this study are helpful for evaluating the pre-BAC treatment process in drinking water treatment plants.


2002 ◽  
Vol 2 (1) ◽  
pp. 233-240 ◽  
Author(s):  
J. Cromphout ◽  
W. Rougge

In Harelbeke a Water Treatment Plant with a capacity of 15,000 m3/day, using Schelde river water has been in operation since April 1995. The treatment process comprises nitrification, dephosphatation by direct filtration, storage into a reservoir, direct filtration, granular activated carbon filtration and disinfection. The design of the three-layer direct filters was based on pilot experiments. The performance of the plant during the five years of operation is discussed. It was found that the removal of atrazin by activated carbon depends on the water temperature.


Sign in / Sign up

Export Citation Format

Share Document